Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(21): 9634-9641, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32319771

RESUMO

Piezoelectric materials are technologically important, and the most used are perovskite ferroelectrics. In recent years, more and more emerging areas have put forward new requirements for piezoelectric materials, such as light weight, low acoustic impedance, good flexibility, and biocompatibility. In this context, hybrid organic-inorganic perovskite ferroelectrics have emerged as promising supplements, because they combine attractive features of inorganic and organic materials. Among them, hybrid double-metal perovskites have recently been found to exhibit excellent ferroelectricity. However, their potential as piezoelectric materials has not been exploited. Here, we describe large piezoelectric response in hybrid rare-earth double perovskite relaxor ferroelectrics (RM3HQ)2RbLa(NO3)6 and (RM3HQ)2NH4La(NO3)6 (RM3HQ = R-N-methyl-3-hydroxylquinuclidinium). They are simultaneously ferroelectric and ferroelastic crystals, with the R3 ferroelectric phase and P213 paraelectric phase. We found that ferroelectric polar microdomains and paraelectric nonpolar regions coexist in a wide temperature range through variable-temperature piezoresponse force microscopy images. The two-phase coexistence reveals low energy barriers of transitions between the two phases and between the polar microdomains with different polarization directions. These lead to the easy polarization rotation of the polar microdomains upon applying a stress and, accordingly, the large piezoelectric response up to 106 pC N-1 for (RM3HQ)2RbLa(NO3)6. This finding represents a significant step toward novel applications of piezoelectric materials based on lead-free hybrid perovskites.

2.
J Am Chem Soc ; 142(1): 545-551, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825221

RESUMO

As a major branch of hybrid perovskites, two-dimensional (2D) hybrid double perovskites are expected to be ideal systems for exploring novel ferroelectric properties, because they can accommodate a variety of organic cations and allow diverse combinations of different metal elements. However, no 2D hybrid double perovskite ferroelectric has been reported since the discovery of halide double perovskites in the 1930s. Based on trivalent rare-earth ions and chiral organic cations, we have designed a new family of 2D rare-earth double perovskite ferroelectrics, A4MIMIII(NO3)8, where A is the organic cation, MI is the alkaline metal or ammonium ion, and MIII is the rare-earth ion. This is the first time that ferroelectricity is realized in 2D hybrid double perovskite systems. These ferroelectrics have achieved high-temperature ferroelectricity and photoluminescent properties. By varying the rare-earth ion, variable photoluminescent properties can be achieved. The results reveal that the 2D rare-earth double perovskite systems provide a promising platform for achieving multifunctional ferroelectricity.

3.
Angew Chem Int Ed Engl ; 59(1): 167-171, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31670443

RESUMO

Substitution of A-site and/or X-site ions of ABX3 -type perovskites with organic groups can give rise to hybrid perovskites, many of which display intriguing properties beyond their parent compounds. However, this method cannot be extended effectively to hybrid antiperovskites. Now, the design of hybrid antiperovskites under the guidance of the concept of Goldschmidt's tolerance factor is presented. Spherical anions were chosen for the A and B sites and spherical organic cations for the X site, and seven hybrid antiperovskites were obtained, including (F3 (H2 O)x )(AlF6 )(H2 dabco)3 , ((Co(CN)6 )(H2 O)5 )(MF6 )(H2 dabco)3 (M=Al3+ , Cr3+ , or In3+ ), (Co(CN)6 )(MF6 )(H2 pip)3 (M=Al3+ or Cr3+ ), and (SbI6 )(AlF6 )(H2 dabco)3 . These new structures reveal that all ions at A, B, and X sites of inorganic antiperovskites can be replaced by molecular ions to form hybrid antiperovskites. This work will lead to the synthesis of a large family of hybrid antiperovskites.

4.
Infect Drug Resist ; 17: 2363-2377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894888

RESUMO

Objective: To investigate the clinical and molecular characteristics of Salmonella spp. causing bloodstream infections (BSIs) in our hospital. Methods: We studied 22 clinical Salmonella isolates from BSIs and 16 from non-BSIs, performing antimicrobial susceptibility testing (AST) and whole genome sequencing (WGS). The analysis included serovars, antibiotic resistance genes (ARGs), virulence factors (VFs), sequence types (STs), plasmid replicons, and genetic relationships. We also assessed pathogenicity of the isolates causing BSIs through growth, biofilm formation, and anti-serum killing assays. Results: WGS analysis identified 13 Salmonella serovars, with four responsible for BSIs. S. Enteritidis was the most prevalent serovar, involved in 19 (50.0%) cases. BSIs were caused by 17S. Enteritidis, two S. Typhimurium, two S. Munster and one S. Diguel. Of the 38 isolates, 27 (71.1%) exhibited high resistance to ampicillin, and 24 (63.2%) to ampicillin/sulbactam. Thirty-six types of ARGs were identified, with blaTEM-1B (n = 25, 65.8%) being the most frequent. Ten plasmid replicons were found; the combination of IncFIB(S)-IncFII(S)-IncX1 was the most common in S. Enteritidis (94.7%). Fifteen STs were identified, among which ST11 was the most prevalent and clonally disseminated, primarily responsible for BSIs. A total of 333 different VFs were detected, 177 of which were common across all strains. No significant differences were observed between the BSI and non-BSI isolates in terms of resistance rates, ARGs, plasmid replicons, and VFs, except for seven VFs. No strong pathogenicity was observed in the BSI-causing isolates. Conclusion: BSIs were predominantly caused by clonally disseminated S. Enteritidis ST11, the majority of which carried multiple ARGs, VFs and plasmid replicons. This study provides the first data on clonally disseminated S. Enteritidis ST11 causing BSIs, highlighting the urgent need for enhanced infection control measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA