Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23677, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775792

RESUMO

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Assuntos
Artemisininas , Autofagia , Cardiotoxicidade , Doxorrubicina , Ferroptose , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Artemisininas/farmacologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Camundongos , Ferroptose/efeitos dos fármacos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos
2.
Yeast ; 41(6): 369-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613186

RESUMO

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Assuntos
Perfilação da Expressão Gênica , Xantofilas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica , Transcriptoma , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise do Fluxo Metabólico , Metabolismo dos Lipídeos , Biomassa
3.
Cell Mol Biol Lett ; 29(1): 12, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212723

RESUMO

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) exist in human blood and somatic cells, and are essential for oncogene plasticity and drug resistance. However, the presence and impact of eccDNAs in type 2 diabetes mellitus (T2DM) remains inadequately understood. METHODS: We purified and sequenced the serum eccDNAs obtained from newly diagnosed T2DM patients and normal control (NC) subjects using Circle-sequencing. We validated the level of a novel circulating eccDNA named sorbin and SH3-domain- containing-1circle97206791-97208025 (SORBS1circle) in 106 newly diagnosed T2DM patients. The relationship between eccDNA SORBS1circle and clinical data was analyzed. Furthermore, we explored the source and expression level of eccDNA SORBS1circle in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. RESULTS: A total of 22,543 and 19,195 eccDNAs were found in serum samples obtained from newly diagnosed T2DM patients and NC subjects, respectively. The T2DM patients had a greater distribution of eccDNA on chromosomes 1, 14, 16, 17, 18, 19, 20 and X. Additionally, 598 serum eccDNAs were found to be upregulated, while 856 eccDNAs were downregulated in T2DM patients compared with NC subjects. KEGG analysis demonstrated that the genes carried by eccDNAs were mainly associated with insulin resistance. Moreover, it was validated that the eccDNA SORBS1circle was significantly increased in serum of newly diagnosed T2DM patients (106 T2DM patients vs. 40 NC subjects). The serum eccDNA SORBS1circle content was positively correlated with the levels of glycosylated hemoglobin A1C (HbA1C) and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM patients. Intracellular eccDNA SORBS1circle expression was significantly enhanced in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. Moreover, the upregulation of eccDNA SORBS1circle in the HG/PA-treated HepG2 cells was dependent on generation of apoptotic DNA fragmentation. CONCLUSIONS: These results provide a preliminary understanding of the circulating eccDNA patterns at the early stage of T2DM and suggest that eccDNA SORBS1circle may be involved in the development of insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , DNA , DNA Circular/genética , Palmitatos , Glucose , Proteínas dos Microfilamentos/genética
4.
Stroke ; 54(6): 1464-1473, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37154059

RESUMO

BACKGROUND: Robot-assisted arm training is generally delivered in the robot-like manner of planar or mechanical 3-dimensional movements. It remains unclear whether integrating upper extremity (UE) natural coordinated patterns into a robotic exoskeleton can improve outcomes. The study aimed to compare conventional therapist-mediated training to the practice of human-like gross movements derived from 5 typical UE functional activities managed with exoskeletal assistance as needed for patients after stroke. METHODS: In this randomized, single-blind, noninferiority trial, patients with moderate-to-severe UE motor impairment due to subacute stroke were randomly assigned (1:1) to receive 20 sessions of 45-minute exoskeleton-assisted anthropomorphic movement training or conventional therapy. Treatment allocation was masked from independent assessors, but not from patients or investigators. The primary outcome was the change in the Fugl-Meyer Assessment for Upper Extremity from baseline to 4 weeks against a prespecified noninferiority margin of 4 points. Superiority would be tested if noninferiority was demonstrated. Post hoc subgroup analyses of baseline characteristics were performed for the primary outcome. RESULTS: Between June 2020 and August 2021, totally 80 inpatients (67 [83.8%] males; age, 51.9±9.9 years; days since stroke onset, 54.6±38.0) were enrolled, randomly assigned to the intervention, and included in the intention-to-treat analysis. The mean Fugl-Meyer Assessment for Upper Extremity change in exoskeleton-assisted anthropomorphic movement training (14.73 points; [95% CI, 11.43-18.02]) was higher than that of conventional therapy (9.90 points; [95% CI, 8.15-11.65]) at 4 weeks (adjusted difference, 4.51 points [95% CI, 1.13-7.90]). Moreover, post hoc analysis favored the patient subgroup (Fugl-Meyer Assessment for Upper Extremity score, 23-38 points) with moderately severe motor impairment. CONCLUSIONS: Exoskeleton-assisted anthropomorphic movement training appears to be effective for patients with subacute stroke through repetitive practice of human-like movements. Although the results indicate a positive sign for exoskeleton-assisted anthropomorphic movement training, further investigations into the long-term effects and paradigm optimization are warranted. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100044078.


Assuntos
Exoesqueleto Energizado , Transtornos dos Movimentos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Feminino , Reabilitação do Acidente Vascular Cerebral/métodos , Método Simples-Cego , Recuperação de Função Fisiológica , Resultado do Tratamento , Extremidade Superior , Acidente Vascular Cerebral/terapia
5.
Clin Immunol ; 247: 109234, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36649749

RESUMO

Obesity is a complicated metabolic disease characterized by meta-inflammation in adipose tissues. In this study, we explored the roles of a new long non-coding RNA (lncRNA), HEM2ATM, which is highly expressed in adipose tissue M2 macrophages, in modulating obesity-associated meta-inflammation and insulin resistance. HEM2ATM expression decreased significantly in adipose tissue macrophages (ATMs) obtained from epididymal adipose tissues of high-fat diet (HFD)-induced obese mice. Overexpression of macrophage HEM2ATM improved meta-inflammation and insulin resistance in the adipose tissues of HFD-fed mice. Functionally, HEM2ATM negatively regulated the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in macrophages. Mechanistically, HEM2ATM bound to heterogeneous nuclear ribonucleoprotein U (hnRNP U), suppressed hnRNP U translocation from the nucleus to the cytoplasm, hindered the function of cytoplasmic hnRNP U on TNF-α and IL-6 mRNA stabilization, and decreased the secretion of TNF-α and IL-6. Collectively, HEM2ATM is a novel suppressor of obesity-associated meta-inflammation and insulin resistance.


Assuntos
Resistência à Insulina , RNA Longo não Codificante , Camundongos , Animais , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistência à Insulina/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tecido Adiposo , Inflamação/metabolismo , Obesidade/genética , Obesidade/complicações , Camundongos Endogâmicos C57BL
6.
J Psychiatry Neurosci ; 48(6): E452-E460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38123242

RESUMO

BACKGROUND: Interhemispheric cooperation is one of the most prominent functional architectures of the human brain. In patients with schizophrenia, interhemispheric cooperation deficits have been reported using increasingly powerful neurobehavioural and neuroimaging measures. However, these methods rely in part on the assumption of anatomic symmetry between hemispheres. In the present study, we explored interhemispheric cooperation deficits in schizophrenia using a newly developed index, connectivity between functionally homotopic voxels (CFH), which is unbiased by hemispheric asymmetry. METHODS: Patients with schizophrenia and age- and sexmatched healthy controls underwent multimodal MRI, and whole-brain CFH maps were constructed for comparison between groups. We examined the correlations of differing CFH values between the schizophrenia and control groups using various neurotransmitter receptor and transporter densities. RESULTS: We included 86 patients with schizophrenia and 86 matched controls in our analysis. Patients with schizophrenia showed significantly lower CFH values in the frontal lobes, left postcentral gyrus and right inferior temporal gyrus, and significantly greater CFH values in the right caudate nucleus than healthy controls. Moreover, the differing CFH values in patients with schizophrenia were significantly correlated with positive symptom score and illness duration. Functional connectivity within frontal lobes was significantly reduced at the voxel cluster level compared with healthy controls. Finally, the abnormal CFH map of patients with schizophrenia was spatially associated with the densities of the dopamine D1 and D2 receptors, fluorodopa, dopamine transporter, serotonin transporter and acetylcholine transporter. CONCLUSION: Regional abnormalities in interhemispheric cooperation may contribute to the clinical symptoms of schizophrenia. These CFH abnormalities may be associated with dysfunction in neurotransmitter systems strongly implicated in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Núcleo Caudado
7.
Biochem Genet ; 61(6): 2363-2381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37041365

RESUMO

Little progress has been made in the treatment and prognosis of osteosarcoma in the past 40 years. Tumor microenvironment (TME) plays a critical role in the progression of osteosarcoma. This study aims to determine immune-associated prognostic biomarkers for osteosarcoma patients. With the help of analytical tools including ESTIMATE, differential gene expression, LASSO, and univariate cox and multivariate cox regression analysis, osteosarcoma gene expression data from Gene Expression Omnibus (GEO) databases were investigated. Following the establishment of a prognostic risk score model, internal and external validations using the GEO and TARGET databases were carried out. A total of 44 and 55 samples respectively in the GSE21257 and the TARGET databases were included. Our analysis found 93 differentially expressed genes (DEGs) between the high and low-ImmuneScore groups. Through univariate cox and LASSO analysis, ALOX5AP was identified as an indicator of TME in osteosarcomas. ALOX5AP was then used to construct a prognostic risk model. Internal and external verification revealed that higher expression of ALOX5AP was correlated with lower risk. Through the CIBERSORT algorithm, the level of CD8 T cells was found to negatively correlate with the risk score. This study revealed that ALOX5AP is an indicator for predicting high CD8 lymphocyte infiltration and "hot" tumor microenvironment in osteosarcomas. Thus, ALOX5AP has the potential to act as a biomarker for effective immunotherapies in osteosarcoma patients.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase , Linfócitos T CD8-Positivos , Osteossarcoma , Microambiente Tumoral , Proteínas Ativadoras de 5-Lipoxigenase/genética , Humanos , Linfócitos T CD8-Positivos/imunologia , Osteossarcoma/genética , Osteossarcoma/imunologia , Biologia Computacional , Fatores de Risco , Biomarcadores Tumorais/genética , Linfócitos do Interstício Tumoral
8.
Metab Eng ; 73: 182-191, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934177

RESUMO

Phenolic acids and tanshinones are main bioactive compounds produced in Salvia miltiorrhiza widely used in treatment of cardiovascular diseases, which could be promoted by abscisic acid elicitation. However, the regulation mechanism remained to be elucidated. An ABA-inducible IIa WRKY transcription factor (TF) named SmWRKY34 exhibiting high homology with AtWRKY40 was isolated. SmWRKY34 exhibited a negative role on phenolic acids and tanshinones by directly regulating SmRAS and SmGGPPS. Moreover, ABA-responsive bZIP TF member named SmbZIP3 expressing significantly in SmWRKY34 transcriptome was screened. SmWRKY34 showed a negative regulatory role on SmbZIP3. SmbZIP3 acted as a positive regulator in the biosynthesis of phenolic acids and tanshinones by targeting SmTAT and two tanshinone-promoting TFs SmERF128 and SmMYB9b. Taken together, we identify a new module WRKY34-bZIP3 involved in ABA signaling that manipulates phenolic acid and tanshinone accumulation, shedding new insights in metabolic engineering application in S. miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Abietanos , Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo
9.
World J Surg Oncol ; 20(1): 401, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529741

RESUMO

OBJECTIVE: This paper aims to explore the diagnostic value of enhanced magnetic resonance imaging (MRI) combined with a carcinoembryonic antigen (CEA) and carbohydrate antigen in terms of the liver metastasis of colorectal cancer. METHODS: A total of 167 colorectal cancer patients with liver metastasis and 167 colorectal cancer patients without liver metastasis were selected as the subjects. An automatic electrochemiluminescence analyser was then used to detect the tumour markers CEA, CA19-9, CA125 and CA72-4. The consistency between the MRI examination and clinical pathological examination was also analysed, and the sensitivity, specificity and positive and negative predictive values of various combined detection methods were compared. RESULTS: The abnormal rates of CEA, CA19-9, CA125 and CA72-4 in the two groups were statistically significant (P < 0.05), while the results of the enhanced MRI and clinicopathological examination for liver metastasis in patients with colon cancer were largely consistent (Kappa coefficient = 0.788, P < 0.000). However, the two methods were inconsistent. The false positive rate of the enhanced MRI examination was 15.3%, while the false negative rate was 6.0%. The specificity (94.61%), positive predictive value (92.68%) and positive likelihood ratio (12.67%) were the highest for the MRI combined with serial CEA, while the sensitivity (98.80%) and negative predictive value (97.22%) were the highest with the MRI combined with parallel CEA, and this combination returned the lowest negative likelihood ratio (0.03). CONCLUSION: The combination of MRI and CEA excludes non-metastatic patients and identifies colorectal liver metastasis cancer patients. Overall, it has a higher diagnostic value.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Antígeno CA-19-9 , Antígeno Carcinoembrionário , Antígenos Glicosídicos Associados a Tumores , Antígeno Ca-125 , Biomarcadores Tumorais , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Colorretais/patologia , Imageamento por Ressonância Magnética
10.
J Fish Biol ; 101(5): 1150-1159, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36373002

RESUMO

Gymnocypris przewalskii (Naked carp), a native teleost, plays an important role in maintaining the ecological balance of Lake Qinghai (altitude, 3.2 km), the largest saline lake in China. In this study, a new gill cell line from G. przewalskii was developed using the explant technique and named as GPG. This cell line was maintained in Dulbecco's Modified Eagle Medium (DMEM) (high glucose), supplemented with 15% fetal bovine serum (FBS), and was successfully subcultured up to 32 passages. Meanwhile, this cell line was also authenticated by sequencing the mitochondrial cytochrome C oxidase subunit I (COI) and 16S rRNA genes and by chromosome analysis. With the Cytomegalovirus (CMV) promoter, the GPG cell line could express green fluorescent protein (GFP) at about 5% transfection efficiency. MTT test showed that Clostridium botulinum toxin (BTX) was toxic to the cell line. After cryopreservation with 10% dimethyl sulfoxide (DMSO), this cell line could be successfully revived at an efficiency over 70%. This study revealed that the GPG cell line could be used as materials for physio-chemical investigation of G. przewalskii and also provided a tool for gene function study and toxicological reaction in vitro.


Assuntos
Cyprinidae , Lagos , Animais , Tibet , Brânquias , RNA Ribossômico 16S , Cyprinidae/genética , Linhagem Celular
11.
BMC Genomics ; 22(1): 372, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016054

RESUMO

BACKGROUND: Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance. RESULTS: We screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S. To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35 Mb-38.13 Mb on chromosome 5 which covered all Pc5.1 reported in publications. A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R. Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism. CONCLUSIONS: Those NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S. Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici.


Assuntos
Capsicum , Phytophthora , Capsicum/genética , Resistência à Doença/genética , Dissecação , Epigênese Genética , Genes vpr , Doenças das Plantas/genética
12.
Appl Environ Microbiol ; 87(17): e0048121, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132586

RESUMO

Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.


Assuntos
Proteínas de Bactérias/genética , Esqualeno/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Proteínas de Bactérias/metabolismo , Deleção de Genes , Engenharia Metabólica , Fatores de Transcrição/metabolismo , Yarrowia/enzimologia
13.
Appl Microbiol Biotechnol ; 105(21-22): 8561-8573, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34661706

RESUMO

Given the grave concerns over increasing consumption of petroleum resources and dramatic environmental changes arising from carbon dioxide emissions worldwide, microbial biosynthesis of fatty acid ethyl ester (FAEE) biofuels as renewable and sustainable replacements for petroleum-based fuels has attracted much attention. As one of the most important microbial chassis, the nonconventional oleaginous yeast Yarrowia lipolytica has emerged as a paradigm organism for the production of several advanced biofuels and chemicals. Here, we report the engineering of Y. lipolytica for use as an efficient dual biocatalytic system for in situ and one-pot production of FAEEs from renewable feedstock. Compared to glucose with 5.7% (w/w) conversion rate to FAEEs, sunflower seed oil in the culture medium was efficiently used to generate FAEEs with 84% (w/w) conversion rate to FAEEs by the engineered Y. lipolytica strain GQY20 that demonstrates an optimized intercellular heterologous FAEE synthesis pathway. In particular, the titer of extracellular FAEEs from sunflower seed oil reached 9.9 g/L, 10.9-fold higher than that with glucose as a carbon source. An efficient dual biocatalytic system combining ex vivo and strengthened in vitro FAEE production routes was constructed by overexpression of a lipase (Lip2) variant in the background strain GQY20, which further increased FAEEs levels to 13.5 g/L. Notably, deleting the ethanol metabolism pathway had minimal impact on FAEE production. Finally, waste cooking oil, a low-cost oil-based substance, was used as a carbon source for FAEE production in the Y. lipolytica dual biocatalytic system, resulting in production of 12.5 g/L FAEEs. Thus, the developed system represents a promising green and sustainable process for efficient biodiesel production. KEY POINTS: • FAEEs were produced by engineered Yarrowia lipolytica. • A Lip2 variant was overexpressed in the yeast to create a dual biocatalytic system. • Waste cooking oil as a substrate resulted in a high titer of 12.5 g/L FAEEs.


Assuntos
Yarrowia , Biocombustíveis , Ésteres , Ácidos Graxos , Engenharia Metabólica , Yarrowia/genética
14.
Biotechnol Lett ; 43(6): 1143-1154, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33751317

RESUMO

Ansamitocin (AP-3) is an ansamycins antibiotic isolated from Actinosynnema pretiosum and demonstrating high anti-tumor activity. To improve AP-3 production, the A. pretiosum ATCC 31565 strain was treated with atmospheric and room temperature plasma (ARTP). Four stable mutants were obtained by ARTP, of which the A. pretiosum L-40 mutant produced 242.9 mg/L AP-3, representing a 22.5% increase compared to the original wild type strain. With seed medium optimization, AP-3 production of mutant L-40 reached 307.8 mg/L; qRT-PCR analysis revealed that AP-3 biosynthesis-related gene expression was significantly up-regulated under optimized conditions. To further improve the AP-3 production, genome shuffling (GS) technology was used on the four A. pretiosum mutants by ARTP. After three rounds of GS combined with high-throughput screening, the genetically stable recombinant strain G3-96 was obtained. The production of AP-3 in the G3-96 strain was 410.1 mg/L in shake flask cultures, which was 44.5% higher than the L-40 production from the parental strain, and AP-3 was increased by 93.8% compared to the wild-type A. pretiosum. These results suggest that the combination of mutagenesis, seed medium optimization, and GS technology can effectively improve the AP-3 production capacity of A. pretiosum and provide an enabling methodology for AP-3 industrial production.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Maitansina/análogos & derivados , Plasma/fisiologia , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Embaralhamento de DNA , Fermentação , Maitansina/biossíntese , Engenharia Metabólica , Mutagênese
15.
Biotechnol Lett ; 43(7): 1277-1287, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33797654

RESUMO

OBJECTIVE: Erythritol (1,2,3,4-butanetetrol) is a 4-carbon sugar alcohol that occurs in nature as a metabolite or storage compound. In this study, a multiple gene integration strategy was employed to enhance erythritol production in Y. lipolytica. RESULTS: The effects on the production of erythritol in Y. lipolytica of seven key genes involved in the erythritol synthesis pathway were evaluated individually, among which transketolase (TKL1) and transaldolase (TAL1) showed important roles in enhancing erythritol production. The combined overexpression of four genes (GUT1, TPI1, TKL1, TAL1) and disruption of the EYD1 gene (encoding erythritol dehydrogenase), resulted in produce approximately 40 g/L erythritol production from glycerol. Further enhanced erythritol synthesis was obtained by overexpressing the RKI1 gene (encoding ribose 5-phosphate isomerase) and the AMPD gene (encoding AMP deaminase), indicating for the first time that these two genes are also related to the enhancement of erythritol production in Y. lipolytica. CONCLUSIONS: A combined gene overexpression strategy was developed to efficiently improve the production of erythritol in Y. lipolytica, suggesting a great capacity and promising potential of this non-conventional yeast in converting glycerol into erythritol.


Assuntos
Eritritol/biossíntese , Proteínas Fúngicas/genética , Engenharia Metabólica/métodos , Yarrowia/crescimento & desenvolvimento , AMP Desaminase/genética , Aldose-Cetose Isomerases/genética , Técnicas de Cultura Celular por Lotes , Glicerol/metabolismo , Transaldolase/genética , Transcetolase/genética , Yarrowia/genética , Yarrowia/metabolismo
16.
Nat Chem Biol ; 14(6): 575-581, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29632414

RESUMO

Living organisms have evolved mechanisms for adjusting their metabolism to adapt to environmental nutrient availability. Terrestrial animals utilize the ornithine-urea cycle to dispose of excess nitrogen derived from dietary protein. Here, we identified an active ornithine-ammonia cycle (OAC) in cyanobacteria through an approach combining dynamic 15N and 13C tracers, metabolomics, and mathematical modeling. The pathway starts with carbamoyl phosphate synthesis by the bacterial- and plant-type glutamine-dependent enzyme and ends with conversion of arginine to ornithine and ammonia by a novel arginine dihydrolase. An arginine dihydrolase-deficient mutant showed disruption of OAC and severely impaired cell growth when nitrogen availability oscillated. We demonstrated that the OAC allows for rapid remobilization of nitrogen reserves under starvation and a high rate of nitrogen assimilation and storage after the nutrient becomes available. Thus, the OAC serves as a conduit in the nitrogen storage-and-remobilization machinery in cyanobacteria and enables cellular adaptation to nitrogen fluctuations.


Assuntos
Amônia/química , Cianobactérias/enzimologia , Hidrolases/química , Ornitina/química , Arginina/química , Proteínas de Bactérias/química , Biomassa , Dióxido de Carbono/química , Citrulina/química , Mutação , Nitrogênio/química , Isótopos de Nitrogênio/química , Oscilometria , Poliaminas/química , Synechocystis/enzimologia , Ureia/química
17.
FEMS Yeast Res ; 20(6)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840573

RESUMO

Limonene, a valuable cyclic monoterpene, has been broadly studied in recent decades due to its wide application in the food, cosmetics and pharmaceutical industries. Engineering of the yeast Yarrowia lipolytica for fermentation of renewable biomass lignocellulosic hydrolysate may reduce the cost and improve the economics of bioconversion for the production of limonene. The aim of this study was to engineer Y. lipolytica to produce limonene from xylose and low-cost lignocellulosic feedstock. The heterologous genes XR and XDH and native gene XK encoding xylose assimilation enzymes, along with the heterologous genes tNDPS1 and tLS encoding orthogonal limonene biosynthetic enzymes, were introduced into the Po1f strain to facilitate xylose fermentation to limonene. The initially developed strain produced 0.44 mg/L of limonene in 72 h with 20 g/L of xylose. Overexpression of genes from the mevalonate pathway, including HMG1 and ERG12, significantly increased limonene production from xylose to ∼9.00 mg/L in 72 h. Furthermore, limonene production peaked at 20.57 mg/L with 50% hydrolysate after 72 h when detoxified lignocellulosic hydrolysate was used. This study is the first to report limonene production by yeast from lignocellulosic feedstock, and these results indicate the initial steps toward economical and sustainable production of isoprenoids from renewable biomass by engineered Y. lipolytica.


Assuntos
Lignina/metabolismo , Limoneno/metabolismo , Engenharia Metabólica , Xilose/metabolismo , Yarrowia/metabolismo , Fermentação , Microbiologia Industrial , Redes e Vias Metabólicas , Yarrowia/genética
18.
BMC Cardiovasc Disord ; 20(1): 403, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894067

RESUMO

BACKGROUND: Dysfunction in the late Endothelial Progenitor Cells (EPCs) is responsible for endothelial repair in patients with Coronary Artery Disease (CAD), and the shear stress is beneficial for EPCs function. However, the impact of shear stress on the capacity of EPCs in CAD patients has not been elucidated yet. The C-X-C chemokine receptor 7/extracellular signal-regulated kinase (CXCR7)/(ERK) pathways are identified to regulate EPCs function in CAD patients. Here, we hypothesize that shear stress upregulates the CXCR7/ERK pathways, which restore the EPCs function in CAD patients. METHODS: The human Peripheral Blood Mononuclear Cells (PBMCs) were collected from healthy adults and CAD patients and then used for EPCs cultivation. The Lv-siRNA for human CXCR7 was transfected into induced EPCs isolated from the CAD patients. Meanwhile, the EPCs from CAD patients were subjected to shear stress generated by a biomimetic device. Next, the cell viability, migration, tube formation, and apoptosis were detected by CCK-8, Transwell assay, Matrigel, and flow cytometry, respectively. Also, the CXCR7/ERK pathways in human EPCs were analyzed by Western blotting and qRT-PCR. RESULT: Compared to the EPCs collected from normal adults, the CAD patient-derived EPCs showed reduced in vitro vasculogenic capacity. Also, the level of CXCR7 in CAD patient-derived EPCs was significantly reduced compared to the EPCs of healthy subjects. Meanwhile, the extracellular signal-regulated kinase (ERK), which represents a CXCR7 downstream signaling pathway, had decreased phosphorylation level. The shear stress treatment augmented the CXCR7 expression and also elevated ERK phosphorylation, which is comparable to the up-regulation of CAD patient-derived EPCs function. Further, the small interfering RNA (siRNA)-mediated CXCR7 knockdown diminished the enhanced migration, adhesion, and tube formation capacity of shear stress treated CAD patient-derived EPCs. CONCLUSION: Up-regulation of the CXCR7/ERK pathways by shear stress can be a promising new target in enhancing the vasculogenic ability of CAD patient-derived EPCs.


Assuntos
Doença da Artéria Coronariana/metabolismo , Células Progenitoras Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores CXCR/metabolismo , Idoso , Estudos de Casos e Controles , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Circulação Coronária , Células Progenitoras Endoteliais/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Fisiológica , Fosforilação , Receptores CXCR/genética , Transdução de Sinais , Estresse Mecânico
19.
Appl Microbiol Biotechnol ; 104(8): 3555-3568, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32114676

RESUMO

Ansamitocin P-3 (AP-3), a 19-membered polyketide macrocyclic lactam, has potent antitumor activity. Our previous study showed that a relatively low organic nitrogen concentration in culture medium could significantly improve AP-3 production of Actinosynnema pretiosum. In the present study, we aimed to reveal the possible reasons for this improvement through metabolomic and gene transcriptional analytical methods. At the same time, a metabolic pathway profile based on metabolome data and pathway correlation information was performed to obtain a systematic view of the metabolic network modulations of A. pretiosum. Orthogonal partial least squares discriminant analysis showed that nine and eleven key metabolites directly associated with AP-3 production at growth phase and ansamitocin production phase, respectively. In-depth pathway analysis results highlighted that low organic nitrogen availability had significant impacts on central carbon metabolism and amino acid metabolic pathways of A. pretiosum and these metabolic responses were found to be beneficial to precursor supply and ansamitocin biosynthesis. Furthermore, real-time PCR results showed that the transcription of genes involved in precursor and ansamitocin biosynthetic pathways were remarkably upregulated under low organic nitrogen condition thus directing increased carbon flux toward ansamitocin biosynthesis. More importantly, the metabolic pathway analysis demonstrated a competitive relationship between fatty acid and AP-3 biosynthesis could significantly affect the accumulation of AP-3. Our findings provided new knowledge on the organic nitrogen metabolism and ansamitocin biosynthetic precursor in A. pretiosum and identified several important rate-limiting steps involved in ansamitocin biosynthesis thus providing a theoretical basis of further improvement in AP-3 production.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Actinobacteria/metabolismo , Meios de Cultura/química , Maitansina/análogos & derivados , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Actinobacteria/genética , Vias Biossintéticas/genética , Carbono/metabolismo , Fermentação , Perfilação da Expressão Gênica , Maitansina/biossíntese , Engenharia Metabólica/métodos , Metabolômica
20.
Biotechnol Lett ; 42(6): 945-956, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32090297

RESUMO

OBJECTIVE: Carotenoids, as potent antioxidant compounds, have gained extensive attention, especially in human health. In this study, the combination of CRISPR/Cas9 integration strategy and fermenter cultivation was utilized to obtain efficient ß-carotene-producing Yarrowia lipolytica cell factories for potential industrial application. RESULTS: The introduction of the genes of Mucor circinelloides, encoding phytoene dehydrogenase (carB) and bifunctional phytoene synthase/lycopene cyclase (carRP), contributed to the heterologous production of ß-carotene in Y. lipolytica XK2. Furthermore, ß-carotene production was efficiently enhanced by increasing the copy numbers of the carB and carRP genes and overexpressing of GGS1, ERG13, and HMG, the genes related to the mevalonate (MVA) pathway. Thus, the optimized strain overexpressed a total of eight genes, including three copies of carRP, two copies of carB, and single copies of GGS1, HMG, and ERG13. As a consequence, strain Y. lipolytica XK19 accumulated approximately 408 mg/L ß-carotene in shake flask cultures, a twenty-four-fold increase compared to the parental strain Y. lipolytica XK2. CONCLUSIONS: 4.5 g/L ß-carotene was obtained in a 5-L fermenter through a combination of genetic engineering and culture optimization, suggesting a great capacity and flexibility of Y. lipolytica in the production of carotenoids.


Assuntos
Engenharia Metabólica/métodos , Yarrowia/genética , beta Caroteno/metabolismo , Reatores Biológicos , Sistemas CRISPR-Cas/genética , Fermentação , Glucose/metabolismo , Yarrowia/metabolismo , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA