Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Addict Biol ; 29(5): e13401, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782631

RESUMO

Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 µg/0.3 µL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Núcleo Accumbens , Propofol , Ratos Sprague-Dawley , Receptores de Dopamina D1 , Receptores de N-Metil-D-Aspartato , Autoadministração , Transdução de Sinais , Animais , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Propofol/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
BMC Gastroenterol ; 23(1): 202, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308808

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a chronic disorder of the gut-brain axis with significant morbidity. Triptolide, an active compound extracted from Tripterygium wilfordii Hook F (TwHF), has been widely used as a major medicinal herb in the treatment of inflammatory disease. METHODS: The chronic-acute combined stress (CAS) stimulation was used to establish IBS rat model. The model rats were then gavaged with triptolide. Forced swimming, marble-burying, fecal weight and abdominal withdrawal reflex (AWR) score were recorded. Pathologic changes in the ileal and colonic tissues were validated by hematoxylin and eosin staining. The inflammatory cytokines and Ornithine Decarboxylase-1 (ODC1) in the ileal and colonic tissues were performed by ELISA and WB. RESULTS: Triptolide didn't have antidepressant- and antianxiety- effects in rats caused by CAS, but decreased fecal weight and AWR score. In addition, Triptolide reduced the release of IL-1, IL-6, and TNF-α and the expression of ODC1 in the ileum and colon. CONCLUSION: The therapeutic efficacy of triptolide for IBS induced by CAS was revealed in this study, which may be related to the reduction of ODC1.


Assuntos
Diterpenos , Síndrome do Intestino Irritável , Fenantrenos , Animais , Ratos
3.
Neurochem Res ; 46(5): 1081-1091, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33616808

RESUMO

Propofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5-10.0 ng/site), MSX-3 (A2AR antagonist, 5.0-20.0 µg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75-3.0 µg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75-3.0 µg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0-20.0 µg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.


Assuntos
Núcleo Accumbens/efeitos dos fármacos , Propofol/farmacologia , Receptor A2A de Adenosina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Sinais (Psicologia) , Masculino , Núcleo Accumbens/metabolismo , Fenetilaminas/farmacologia , Propofol/administração & dosagem , RNA Interferente Pequeno/farmacologia , Ratos Sprague-Dawley , Receptor A2A de Adenosina/deficiência , Recidiva , Autoadministração , Xantinas/farmacologia
4.
Heliyon ; 10(10): e31473, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813174

RESUMO

Background: Globally, cardiovascular disease (CVD) has emerged as a leading cause of mortality. Bisphenol A (BPA), recognized as one of the most prevalent and widely distributed endocrine-disrupting chemicals (EDCs), has been consistently linked to the progression of CVD. This research centers on unraveling the molecular mechanisms responsible for the toxic effects of BPA exposure on CVD. Key targets and pathways involved in action of BPA on CVD were investigated by network toxicology. Binding abilities of BPA to core targets were evaluated by molecular docking. Methods and results: Based on information retrieved from ChEMBL, DrugBank, and OMIM databases, a total of 27 potential targets were found to be associated with the influence of BPA on CVD. Furthermore, the STRING and Cytoscape software were employed to identify three central genes-ESR1, PPARG, and PTGS2-and to construct both the protein-protein interaction network and an interaction diagram of potential targets. Gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes, KEGG) pathway enrichment analyses via WebGestalt revealed key biological processes (BP), cellular components (CC), molecular functions (MF), and pathways, such as the calcium signaling pathway, inflammatory mediator regulation of TRP channels, gap junction, adrenergic signaling in cardiomyocytes, cGMP-PKG signaling pathway, and cAMP signaling pathway, predominantly involved in BPA-induced CVD toxicity. By using molecular docking investigations, it proved that BPA binds to ESR1, PPARG, and PTGS2 steadily and strongly. Conclusion: This study not only establishes a theoretical framework for understanding the molecular toxicity mechanism of BPA in cardiovascular disease (CVD) but also introduces an innovative network toxicology approach to methodically investigate the influence of environmental contaminants on CVD. This methodology sets the stage for drug discovery efforts targeting CVD linked to exposure to endocrine-disrupting chemicals (EDCs).

5.
Diabetol Metab Syndr ; 15(1): 186, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700366

RESUMO

BACKGROUND: Heart failure is closely correlated with diabetic cardiomyopathy (DCM) and can lead to mortality. Celastrol has long been utilized for the treatment of immune and inflammatory disorders. However, whether celastrol would exert protective effects on DCM has not been determined. This work aimed to explore the protective actions of celastrol on DCM and unravel the underlying mechanisms involved. METHODS: A DCM model was constructed in mice by intraperitoneal administration of streptozotocin. ELISA and echocardiography were performed to examine myocardial injury markers and cardiac function, respectively. Morphological changes and fibrosis were assessed using H&E staining and Masson's staining. Inflammatory cytokines and fibrotic markers were detected by ELISA and RT-PCR. Endothelial nitric oxide synthase, apoptosis, and reactive oxygen species were detected by microscopic staining. Network pharmacology approaches, molecular docking analysis, ELISA, and Western blot were used for mechanism studies. RESULTS: Celastrol alleviated diabetes-induced cardiac injury and remodeling. Celastrol also suppressed diabetes-induced production of inflammatory cytokines and reactive oxygen species, as well as cardiomyocyte apoptosis. The cardioprotective effects of celastrol were associated with its inhibition on the angiotensin-converting enzyme / angiotensin II / angiotensin II receptor type 1 signaling pathway. CONCLUSION: Celastrol exhibits significant potential as an effective cardioprotective drug for DCM treatment. The underlying mechanisms can be attributed to the blockage of celastrol on the angiotensin-converting enzyme signaling pathway.

6.
Front Cardiovasc Med ; 9: 1006213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582738

RESUMO

Background: Maladaptive inflammation is implicated in the development of diabetic cardiomyopathy (DCM). This study aimed to visually analyze the global scientific output over the past two decades regarding research on inflammation associated with DCM. Methods: All relevant articles and reviews were retrieved in the Web of Science (WOS) Core Collection (limited to SCIE) using "inflammation" and "diabetic cardiomyopathy" as search terms. Articles and reviews published from 1 January 2001 to 28 February 2021 were collected. Visualization analysis and statistical analysis were conducted by Microsoft 365 Excel and VOSviewer 1.6.18. Results: A total of 578 documents were finally selected for further analysis. The publications regarding inflammation and DCM increased gradually over approximately 20 years. The most prolific country was China, with 296 documents and the most citations (9,366). The most influential author groups were Lu Cai and Yihui Tan who were from the United States. The bibliometric analysis of co-occurrence keywords showed that inflammation in DCM is composed of numerous molecules (NF-κB, NLRP3 inflammasome, Nrf-2, TNF-α, protein kinase C, PPARα, TLR4, p38 mitogen-activated protein kinase, TGF-ß, Sirt1, and AKT), a variety of cardiac cell types (stem cell, fibroblast, and cardiomyocyte), physiological processes (apoptosis, oxidative stress, autophagy, endoplasmic reticulum stress, hypertrophy, mitochondrion dysfunction, and proliferation), and drugs (sulforaphane, metformin, empagliflozin, and rosuvastatin). Conclusion: Our bibliometric analysis presents the characteristics and trends of inflammation in DCM and shows that research on inflammation in DCM will continue to be a hotspot.

7.
Front Cardiovasc Med ; 9: 868372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557520

RESUMO

Objective: Diabetic cardiomyopathy (DCM), characterized by cardiomyopathy with the absence of coronary artery disease, hypertension, and valvular heart disease in patients with diabetes, significantly increases the risk of heart failure. Galectin-3 (Gal-3) has been shown to regulate cardiac inflammation and fibrosis, but its role in DCM remains unclear. This study aimed to determine whether Gal-3 inhibition attenuates DCM and NF-κB p65 activation. Methods: Diabetic cardiomyopathy (DCM) was established by intraperitoneal (IP) injection of streptozotocin for 5 consecutive days in mice. Myocardial injury markers, such as creatine kinase isoenzyme (CK-BM) and lactate dehydrogenase, were detected using ELISA. We used non-invasive transthoracic echocardiography to examine cardiac structure and function. Histological staining was used to explore myocardial morphology and fibrosis. Profibrotic markers and inflammatory cytokines were detected by ELISA and real-time PCR in vivo. The terminal deoxyribonucleotide transferasemediated dUTP nick end-labeling (TUNEL) and immunofluorescence assays were conducted to examine myocardial apoptosis and oxidative stress. Inflammatory cytokines induced by high glucose (HG) were also found in RAW264.7 macrophages. The underlying molecular mechanisms were determined using immunofluorescence and Western blotting analyses. Results: The Gal-3 knockdown was observed to ameliorate myocardial apoptosis, oxidative stress, inflammatory cytokines release, macrophage infiltration, and fibrosis, thus, decreasing cardiac dysfunction in DCM mice. In addition, the silence of Gal-3 could suppress macrophage infiltration and inflammatory cytokine release induced by HG. Finally, a Gal-3/NF-κB p65 regulatory network was clarified in the pathogenesis of DCM. Conclusion: The Gal-3 may promote myocardial apoptosis, oxidative stress, inflammation, and fibrosis in vivo and in vitro by the mechanism of reduction of NF-κB p65 activation.

8.
J Diabetes Res ; 2021: 9944589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926700

RESUMO

The incidence of heart failure was significantly increased in patients with diabetic cardiomyopathy (DCM). The therapeutic effect of triptolide on DCM has been reported, but the underlying mechanisms remain to be elucidated. This study is aimed at investigating the potential targets of triptolide as a therapeutic strategy for DCM using a network pharmacology approach. Triptolide and its targets were identified by the Traditional Chinese Medicine Systems Pharmacology database. DCM-associated protein targets were identified using the comparative toxicogenomics database and the GeneCards database. The networks of triptolide-target genes and DCM-associated target genes were created by Cytoscape. The common targets and enriched pathways were identified by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The gene-gene interaction network was analyzed by the GeneMANIA database. The drug-target-pathway network was constructed by Cytoscape. Six candidate protein targets were identified in both triptolide target network and DCM-associated network: STAT3, VEGFA, FOS, TNF, TP53, and TGFB1. The gene-gene interaction based on the targets of triptolide in DCM revealed the interaction of these targets. Additionally, five key targets that were linked to more than three genes were determined as crucial genes. The GO analysis identified 10 biological processes, 2 cellular components, and 10 molecular functions. The KEGG analysis identified 10 signaling pathways. The docking analysis showed that triptolide fits in the binding pockets of all six candidate targets. In conclusion, the present study explored the potential targets and signaling pathways of triptolide as a treatment for DCM. These results illustrate the mechanism of action of triptolide as an anti-DCM agent and contribute to a better understanding of triptolide as a transcriptional regulator of cytokine mRNA expression.


Assuntos
Fármacos Cardiovasculares/farmacologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Diterpenos/farmacologia , Simulação de Acoplamento Molecular , Miócitos Cardíacos/efeitos dos fármacos , Farmacologia em Rede , Fenantrenos/farmacologia , Células CACO-2 , Bases de Dados Genéticas , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Compostos de Epóxi/farmacologia , Redes Reguladoras de Genes , Humanos , Estrutura Molecular , Terapia de Alvo Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mapas de Interação de Proteínas , Transdução de Sinais , Relação Estrutura-Atividade
9.
Biomed Res Int ; 2021: 5575621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34435046

RESUMO

BACKGROUND: Tripterygium wilfordii Hook F (TwHF) has been used in traditional Chinese medicine (TCM) for treating cardiovascular disease (CVD). However, the underlying pharmacological mechanisms of the effects of TwHF on CVD remain elusive. This study revealed the pharmacological mechanisms of TwHF acting on CVD based on a pharmacology approach. MATERIALS AND METHODS: The active compounds were selected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database according to the absorption, distribution, metabolism, and excretion (ADME). The potential targets of TwHF were obtained from the SwissTargetPrediction database. The CVD-related therapeutic targets were collected from the DrugBank, the GeneCards database, and the OMIM database. Protein-protein interaction (PPI) network was generated by the STITCH database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by R package. The network of drug-targets-diseases-pathways was constructed by the Cytoscape software. RESULTS: The 41 effective ingredients of TwHF and the 178 common targets of TwHF and CVD-related were collected. Furthermore, AKT1, amyloid precursor protein (APP), mitogen-activated protein kinase 1 (MAPK), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA), and cellular tumor antigen p53 (TP53) were identified as the core targets involved in the mechanism of TwHF on CVD. Top ten GO (biological processes, cellular components, and molecular functions) and KEGG pathways were screened with a P value ≤0.01. Finally, we constructed the network of TwHF-targets-CVD-GO-KEGG. CONCLUSIONS: These findings demonstrate that the main active compound of TwHF, the core targets, and pathways maybe provide new insights into the development of a natural therapy for the prevention and treatment of CVD.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Tripterygium/química , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais
10.
Front Behav Neurosci ; 15: 775209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924971

RESUMO

Propofol addiction has been detected in humans and rats, which may be facilitated by stress. Corticotropin-releasing factor acts through the corticotropin-releasing factor (CRF) receptor-1 (CRF1R) and CRF2 receptor-2 (CRF2R) and is a crucial candidate target for the interaction between stress and drug abuse, but its role on propofol addiction remains unknown. Tail clip stressful stimulation was performed in rats to test the stress on the establishment of the propofol self-administration behavioral model. Thereafter, the rats were pretreated before the testing session at the bilateral lateral ventricle with one of the doses of antalarmin (CRF1R antagonist, 100-500 ng/site), antisauvagine 30 (CRF2R antagonist, 100-500 ng/site), and RU486 (glucocorticoid receptor antagonist, 100-500 ng/site) or vehicle. The dopamine D1 receptor (D1R) in the nucleus accumbens (NAc) was detected to explore the underlying molecular mechanism. The sucrose self-administration establishment and maintenance, and locomotor activities were also examined to determine the specificity. We found that the establishment of propofol self-administration was promoted in the tail clip treated group (the stress group), which was inhibited by antalarmin at the dose of 100-500 ng/site but was not by antisauvagine 30 or RU486. Accordingly, the expression of D1R in the NAc was attenuated by antalarmin, dose-dependently. Moreover, pretreatments fail to change sucrose self-administration behavior or locomotor activities. This study supports the role of CRF1R in the brain in mediating the central reward processing through D1R in the NAc and provided a possibility that CRF1R antagonist may be a new therapeutic approach for the treatment of propofol addiction.

11.
Toxicology ; 454: 152740, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33662507

RESUMO

Xylene is a cyclic hydrocarbon, which is commonly used as a solvent in dyes, paints, polishes, and industrial solutions. It is a potential environmental pollutant. Here, we report the effect of xylene exposure on Leydig cell development in male rats during puberty. Xylene (0, 150, 750, and 1500 mg/kg) was gavaged to 35-day-old male Sprague Dawley rats for 21 days. Xylene significantly reduced serum testosterone levels at 750 and 1500 mg/kg without affecting serum luteinizing hormone and follicle-stimulating hormone levels. Xylene reduced the number of HSD11B1-positive Leydig cells at the advanced stage at 1500 mg/kg. At 750 and 1500 mg/kg, xylene also reduced the cell size and cytoplasm size. It down-regulated the expression of Leydig cell-specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd11b1) and proteins. In addition, xylene significantly reduced the ratio of phosphorus-GSK-3ß (pGSK-3ß/GSK-3ß), phosphorus-ERK1/2 (pERK)/ERK1/2, and phosphorus-AKT1 (pAKT1)/AKT1, and SIRT1 levels in the testes. In vitro Leydig cell culture showed that xylene induced oxidative stress by increasing the production of reactive oxygen species and lowing antioxidant (Sod2), and inhibited the production of testosterone, and down-regulated the expression of genes related to steroidogenesis, while vitamin E reversed the xylene-mediated effect as an antioxidant. In conclusion, xylene exposure may disrupt the development of pubertal Leydig cells by increasing reactive oxygen species production and reducing the expression of GSK-3ß, ERK1/2, AKT1, and SIRT1.


Assuntos
Células Intersticiais do Testículo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Maturidade Sexual/efeitos dos fármacos , Xilenos/toxicidade , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Testosterona/sangue , Vitamina E/farmacologia , Xilenos/administração & dosagem
12.
Front Pharmacol ; 11: 591337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33603661

RESUMO

Vitamin C (ascorbic acid) is a nutrient used to treat cardiovascular disease (CVD). However, the pharmacological targets of vitamin C and the mechanisms underlying the therapeutic effects of vitamin C on CVD remain to be elucidated. In this study, we used network pharmacology approach to investigate the pharmacological mechanisms of vitamin C for the treatment of CVD. The core targets, major hubs, enriched biological processes, and key signaling pathways were identified. A protein-protein interaction network and an interaction diagram of core target-related pathways were constructed. Three core targets were identified, including phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform, signal transducer and activator of transcription-3 (STAT3), and prothrombin. The GO and KEGG analyses identified top 20 enriched biological processes and signaling pathways involved in the therapeutic effects of vitamin C on CVD. The JAK-STAT, STAT, PD1, EGFR, FoxO, and chemokines signaling pathways may be highly involved in the protective effects of vitamin C against CVD. In conclusion, our bioinformatics analyses provided evidence on the possible therapeutic mechanisms of vitamin C in CVD treatment, which may contribute to the development of novel drugs for CVD.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32733582

RESUMO

BACKGROUND: Aloperine is an active component of Sophora alopecuroides Linn, which has been extensively applied for the treatment of cardiovascular disease (CVD). However, our current understanding of the molecular mechanisms supporting the effects of aloperine on CVD remains unclear. METHODS: Systematic network pharmacology was conducted to provide testable hypotheses about pharmacological mechanisms of the protective effects of aloperine against CVD. Detailed structure was obtained from Traditional Chinese Medicines Integrated Database (TCMID). Target genes of aloperine against CVD were collected from SwissTargetPrediction, DrugBank database, and Online Mendelian Inheritance in Man (OMIM) database. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway performance, and network construction were adopted to explore common target genes. RESULTS: Our findings showed that 25 candidate targets were the interacting genes between aloperine and CVD. GO analysis revealed biological process, cellular component, and molecular function of these target genes. More importantly, the majority of enrichment pathways was found to be highly associated with the nitrogen metabolism by KEGG analysis. Core genes particularly in nitrogen metabolism pathway including carbonic anhydrase (CA) III, CA IV, CA VA, CA VB, CA VI, CA VII, CA IX, CA XII, and CA XIV can be modulated by aloperine in the nitrogen metabolism. CONCLUSION: Our work revealed the pharmacological and molecular mechanisms of aloperine against CVD and provided a feasible tool to identify the pharmacological mechanisms of single active ingredient of traditional Chinese medicines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA