Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2400878, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105375

RESUMO

Amateurs often struggle with detecting and quantifying protein biomarkers in body fluids due to the high expertise required. This study introduces a Lab-in-a-Vial (LV) rapid diagnostic platform, featuring hydrangea-like platinum nanozymes (PtNH), for rapid, accurate detection and quantification of protein biomarkers on-site within 15 min. This method significantly enhances detection sensitivity for various biomarkers in body fluids, surpassing traditional methods such as enzyme-linked immunosorbent assays (ELISA) and lateral flow assays (LFA) by ≈250 to 1300 times. The LV platform uses a glass vial coated with specific bioreceptors such as antigens or antibodies, enabling rapid in vitro evaluation of disease risk from small fluid samples, similar to a personal ELISA-like point-of-care test (POCT). It overcomes challenges in on-site biomarker detection, allowing both detection and quantification through a portable wireless spectrometer for healthcare internet of things (H-IoT). The platform's effectiveness and adaptability are confirmed using IgG/IgM antibodies from SARS-CoV-2 infected patients and nuclear matrix protein (NMP22) from urothelial carcinoma (UC) patients as biomarkers. These tests demonstrated its accuracy and flexibility. This approach offers vast potential for diverse disease applications, provided that the relevant protein biomarkers in bodily fluids are identified.

3.
Cancers (Basel) ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254744

RESUMO

Sonodynamic therapy (SDT) is a novel tumor treatment that combines biosafe sonosensitizers and noninvasive focused ultrasound to eradicate solid tumors. Sonosensitizers such as 5-aminolevulinic acid and fluorescein have great potential in tumor treatment. Here, rodent subcutaneous and brain tumor models were used to evaluate the treatment effect of both 5-ALA- and fluorescein-mediated SDT. The subcutaneous tumor growth rates of both SDT groups were significantly inhibited compared with that of the control groups. For intracranial tumors, 5-ALA-SDT treatment significantly inhibited brain tumor growth, while fluorescein-SDT exerted no therapeutic effect in animals. The distribution of fluorescein in the brain tumor region underwent further assessment. Seven days post tumor implantation, experimental animals received fluorescein and were sacrificed for brain specimen collection. Analysis of the dissected brains revealed no fluorescence signals, indicating an absence of fluorescein accumulation in the early-stage glioma tissue. These data suggest that the fluorescein-SDT treatment response is closely related to the amount of accumulated fluorescein. This study reports the equivalent effects of 5-ALA and fluorescein on the treatment of somatic tumors. For orthotopic brain tumor models, tumor vascular permeability should be considered when choosing fluorescein as a sonosensitizer. In conclusion, both fluorescein and 5-ALA are safe and effective SDT sonosensitizers, and the tumor microenvironment and pathologic type should be considered in the selection of adequate sonosensitizers.

4.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718220

RESUMO

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Assuntos
Barreira Hematoencefálica , Doxorrubicina , Portadores de Fármacos , Nanopartículas , Dióxido de Silício , Animais , Humanos , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/química , Portadores de Fármacos/química , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ligantes , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA