Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563057

RESUMO

Ketamine-associated cystitis is characterized by suburothelial inflammation and urothelial cell death. Norketamine (NK), the main metabolite of ketamine, is abundant in urine following ketamine exposure. NK has been speculated to exert toxic effects in urothelial cells, similarly to ketamine. However, the molecular mechanisms contributing to NK-induced urothelial cytotoxicity are almost unclear. Here, we aimed to investigate the toxic effects of NK and the potential mechanisms underlying NK-induced urothelial cell injury. In this study, NK exposure significantly reduced cell viability and induced apoptosis in human urinary bladder epithelial-derived RT4 cells that NK (0.01-0.5 mM) exhibited greater cytotoxicity than ketamine (0.1-3 mM). Signals of mitochondrial dysfunction, including mitochondrial membrane potential (MMP) loss and cytosolic cytochrome c release, were found to be involved in NK-induced cell apoptosis and death. NK exposure of cells also triggered the expression of endoplasmic reticulum (ER) stress-related proteins including GRP78, CHOP, XBP-1, ATF-4 and -6, caspase-12, PERK, eIF-2α, and IRE-1. Pretreatment with 4-phenylbutyric acid (an ER stress inhibitor) markedly prevented the expression of ER stress-related proteins and apoptotic events in NK-exposed cells. Additionally, NK exposure significantly activated JNK, ERK1/2, and p38 signaling and increased intracellular calcium concentrations ([Ca2+]i). Pretreatment of cells with both PD98059 (an ERK1/2 inhibitor) and BAPTA/AM (a cell-permeable Ca2+ chelator), but not SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor), effectively suppressed NK-induced mitochondrial dysfunction, ER stress-related signals, and apoptotic events. The elevation of [Ca2+]i in NK-exposed cells could be obviously inhibited by BAPTA/AM, but not PD98059. Taken together, these findings suggest that NK exposure exerts urothelial cytotoxicity via a [Ca2+]i-regulated ERK1/2 activation, which is involved in downstream mediation of the mitochondria-dependent and ER stress-triggered apoptotic pathway, consequently resulting in urothelial cell death. Our findings suggest that regulating [Ca2+]i/ERK signaling pathways may be a promising strategy for treatment of NK-induced urothelial cystitis.


Assuntos
Cistite , Ketamina , Apoptose , Estresse do Retículo Endoplasmático , Feminino , Humanos , Ketamina/análogos & derivados , Ketamina/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Mitocôndrias/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270009

RESUMO

Methylmercury (MeHg), a long-lasting organic pollutant, is known to induce cytotoxic effects in mammalian cells. Epidemiological studies have suggested that environmental exposure to MeHg is linked to the development of diabetes mellitus (DM). The exact molecular mechanism of MeHg-induced pancreatic ß-cell cytotoxicity is still unclear. Here, we found that MeHg (1-4 µM) significantly decreased insulin secretion and cell viability in pancreatic ß-cell-derived RIN-m5F cells. A concomitant elevation of mitochondrial-dependent apoptotic events was observed, including decreased mitochondrial membrane potential and increased proapoptotic (Bax, Bak, p53)/antiapoptotic (Bcl-2) mRNA ratio, cytochrome c release, annexin V-Cy3 binding, caspase-3 activity, and caspase-3/-7/-9 activation. Exposure of RIN-m5F cells to MeHg (2 µM) also induced protein expression of endoplasmic reticulum (ER) stress-related signaling molecules, including C/EBP homologous protein (CHOP), X-box binding protein (XBP-1), and caspase-12. Pretreatment with 4-phenylbutyric acid (4-PBA; an ER stress inhibitor) and specific siRNAs for CHOP and XBP-1 significantly inhibited their expression and caspase-3/-12 activation in MeHg-exposed RIN-mF cells. MeHg could also evoke c-Jun N-terminal kinase (JNK) activation and reactive oxygen species (ROS) generation. Antioxidant N-acetylcysteine (NAC; 1mM) or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox; 100 µM) markedly prevented MeH-induced ROS generation and decreased cell viability in RIN-m5F cells. Furthermore, pretreatment of cells with SP600125 (JNK inhibitor; 10 µM) or NAC (1 mM) or transfection with JNK-specific siRNA obviously attenuated the MeHg-induced JNK phosphorylation, CHOP and XBP-1 protein expression, apoptotic events, and insulin secretion dysfunction. NAC significantly inhibited MeHg-activated JNK signaling, but SP600125 could not effectively reduce MeHg-induced ROS generation. Collectively, these findings demonstrate that the induction of ROS-activated JNK signaling is a crucial mechanism underlying MeHg-induced mitochondria- and ER stress-dependent apoptosis, ultimately leading to ß-cell death.


Assuntos
Estresse do Retículo Endoplasmático , Compostos de Metilmercúrio , Animais , Apoptose , Caspase 3/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Mamíferos/metabolismo , Compostos de Metilmercúrio/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922211

RESUMO

4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic ß-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic ß-cells and elucidated the cellular mechanism involved in MBP-induced ß-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of ß-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on ß-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fenóis/toxicidade , Animais , Sobrevivência Celular , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Transdução de Sinais
4.
Am J Emerg Med ; 38(6): 1296.e1-1296.e3, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31956048

RESUMO

A 64-year-old woman presented with coma, seizure, and lactic acidosis after ingesting 80 yam bean seeds. This rotenone-containing seeds cause cellular asphyxia via blockage of the mitochondrial electron transport. Subsequent oxidative stress results in the formation of lipid peroxidation (LPO). Rotenone analysis via liquid chromatography mass spectrometry revealed the following: 31,590 ng/mL in cooked yam bean seed and 100 ng/mL in the blood. We attempted to use N-acetylcysteine to alleviate oxidative stress and documented the continuous decline in the plasma concentration of LPO.


Assuntos
Pachyrhizus/efeitos adversos , Rotenona/análise , Acidose Láctica/complicações , Acidose Láctica/etiologia , Coma/etiologia , Feminino , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Rotenona/efeitos adversos , Rotenona/sangue , Convulsões/etiologia
5.
Regul Toxicol Pharmacol ; 92: 67-74, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29155076

RESUMO

Steady-fiber granule (SFG) is a functional food mixture that is composed of four major ingredients, resistant maltodextrin, white kidney bean (Phaseolus vulgaris) extract, mulberry leaf (Morus alba L.) extract, and niacin-bound chromium complex. This study focused on determining the safety of SFG. Genotoxicity and 28-day oral toxicity were evaluated. SFG did not induce mutagenicity in the bacterial reverse mutation assay using five Salmonella typhimurium strains (TA98, TA100, TA102, TA1535, and TA1537) in the presence or absence of metabolic activation (S9 system). SFG also did not induce clastogenic effects in Chinese hamster ovary cells with or without S9 treatment. Similarly, SFG did not induce genotoxicity in a micronucleus test conducted with mice. A dose-dependent 28-day oral toxicity assessment of SFG for rats revealed no significant effects on mortality, body weight, selected organ weights, and behavior. Evaluations of hematology, clinical biochemistry, and histopathology showed no adverse effects in rats treated with SFG. These results suggest that SFG has no significant mutagenic or toxic properties, and the no observed adverse effect level of SFG was defined as at least 5000 mg/kg/day orally for 28 days for male and female rats.


Assuntos
Alimento Funcional/efeitos adversos , Morus/efeitos adversos , Ácidos Nicotínicos/efeitos adversos , Compostos Organometálicos/efeitos adversos , Phaseolus/efeitos adversos , Extratos Vegetais/efeitos adversos , Folhas de Planta/efeitos adversos , Polissacarídeos/efeitos adversos , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Células CHO , Cricetulus , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Mutagenicidade/métodos , Mutação/efeitos dos fármacos , Niacina/efeitos adversos , Ácidos Nicotínicos/administração & dosagem , Compostos Organometálicos/administração & dosagem , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Ratos , Ratos Wistar
6.
Toxicol Appl Pharmacol ; 294: 54-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26806093

RESUMO

Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic ß-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic ß-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascades and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/ß. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/ß (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic ß-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Janus Quinases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Molibdênio/farmacologia , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos
7.
Curr Res Toxicol ; 6: 100155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379848

RESUMO

Paraquat (PQ), a toxic and nonselective bipyridyl herbicide, is one of the most extensively used pesticides in agricultural countries. In addition to pneumotoxicity, the liver is an important target organ for PQ poisoning in humans. However, the mechanism of PQ in hepatotoxicity remains unclear. In this study, we found that exposure of rat hepatic H4IIE cells to PQ (0.1-2 mM) induced significant cytotoxicity and apoptosis, which was accompanied by mitochondria-dependent apoptotic signals, including loss of mitochondrial membrane potential (MMP), cytosolic cytochrome c release, and changes in the Bcl-2/Bax mRNA ratio. Moreover, PQ (0.5 mM) exposure markedly induced JNK and ERK1/2 activation, but not p38-MAPK. Blockade of JNK and ERK1/2 signaling by pretreatment with the specific pharmacological inhibitors SP600125 and PD98059, respectively, effectively prevented PQ-induced cytotoxicity, mitochondrial dysfunction, and apoptotic events. Additionally, PQ exposure stimulated significant oxidative stress-related signals, including reactive oxygen species (ROS) generation and intracellular glutathione (GSH) depletion, which could be reversed by the antioxidant N-Acetylcysteine (NAC). Buffering the oxidative stress response with NAC also effectively abrogated PQ-induced hepatotoxicity, MMP loss, apoptosis, and phosphorylation of JNK and ERK1/2 protein, however, the JNK or ERK inhibitors did not suppress ROS generation in PQ-treated cells. Collectively, these results demonstrate that PQ exposure induces hepatic cell toxicity and death via an oxidative stress-dependent JNK/ERK activation-mediated downstream mitochondria-regulated apoptotic pathway.

8.
Eur J Pharmacol ; 977: 176676, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815787

RESUMO

Wogonin, a vital bioactive compound extracted from the medicinal plant, Scutellaria baicalensis, has been wildly used for its potential in mitigating the progression of chronic diseases. Chronic kidney disease (CKD) represents a significant global health challenge due to its high prevalence, morbidity and mortality rates, and associated complications. This study aimed to assess the potential of wogonin in attenuating renal fibrosis and to elucidate the underlying molecular mechanisms using a unilateral ureteral obstruction (UUO) mouse model as a CKD mimic. Male mice, 8 weeks old, underwent orally administrated of either 50 mg/kg/day of wogonin or positive control of 5 mg/kg/day candesartan following UUO surgery. NRK52E cells were exposed to tumor growth factors-beta (TGF-ß) to evaluate the anti-fibrotic effects of wogonin. The results demonstrated that wogonin treatment effectively attenuated TGF-ß-induced fibrosis markers in NRK-52E cells. Additionally, administration of wogonin significantly improved histopathological alterations and downregulated the expression of pro-fibrotic factors (Fibronectin, α-smooth muscle actin, Collagen IV, E-cadherin, and TGF-ß), oxidative stress markers (Catalase, superoxide dismutase 2, NADPH oxidase 4, and thioredoxin reductase 1), inflammatory molecules (Cyclooxygenase-2 and TNF-α), and the infiltration of neutrophils and macrophages in UUO mice. Furthermore, wogonin treatment mitigated endoplasmic reticulum (ER) stress-associated molecular markers (GRP78, GRP94, ATF4, CHOP, and the caspase cascade) and suppressed apoptosis. The findings indicate that wogonin treatment ameliorates key fibrotic aspects of CKD by attenuating ER stress-related apoptosis, inflammation, and oxidative stress, suggesting its potential as a future therapeutic target.


Assuntos
Apoptose , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fibrose , Flavanonas , Obstrução Ureteral , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia , Obstrução Ureteral/tratamento farmacológico , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Apoptose/efeitos dos fármacos , Masculino , Camundongos , Linhagem Celular , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Fator de Crescimento Transformador beta/metabolismo , Ratos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Camundongos Endogâmicos C57BL
9.
Toxicol In Vitro ; 86: 105483, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36252918

RESUMO

Chlorpyrifos (CPF) is one of the most abundant and widely used organophosphate pesticides for agricultural, industrial, and household purposes in the world. Epidemiological studies have reported that CPF can induce neurotoxic impairments in mammalian, which is linked to an important risk factor for development of neurodegenerative diseases (NDs). However, limited information is available on CPF-induced neurotoxicity, with the underlying exact mechanism remains unclear. In this study, CPF exposure (10-400 µM) significantly reduced Neuro-2a cell viability and induced apoptotic events, including the increase in caspase-3 activity, apoptotic cell population, and cleavage of caspase-3/-7 and PARP. Exposure of Neuro-2a cells to CPF also triggered CHOP activation. Transfection with CHOP-specific siRNA markedly suppressed the expression of CHOP, and attenuated cytotoxicity and apoptotic events in CPF-exposed Neuro-2a cells. Furthermore, CPF exposure obviously evoked the phosphorylation of Akt as well as ROS generation in a time-dependent manner. Pretreatment with LY294002 (an Akt inhibitor) effectively attenuated the CPF-induced Akt phosphorylation, CHOP activation, and apoptotic events, but not that ROS production. Of note, buffering the ROS generation with antioxidant N-acetylcysteine effectively prevented the CPF-induced ROS generation, CHOP activation, and apoptotic events, but not that the Akt phosphorylation. Collectively, these findings indicate that CPF exposure exerts neuronal cytotoxicity via the independent pathways of ROS generation and Akt activation downstream-regulated CHOP-triggered apoptosis, ultimately leading to neuronal cell death.


Assuntos
Clorpirifos , Animais , Clorpirifos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Estresse Oxidativo , Morte Celular , Apoptose , Mamíferos/metabolismo
10.
J Biomed Biotechnol ; 2012: 254582, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888198

RESUMO

Cinnabar, a naturally occurring mercuric sulfide (HgS), has long been used in Chinese mineral medicine for more than 2000 years. Although mercury is well-known for its toxicity, whether cinnabar induces neurotoxicity, especially in infants and children, is unknown. The purpose of this study was to explore the neurotoxic effects of low-dose of cinnabar (10 mg/kg/day) on developing mice. The results revealed neurobehavioral defects in F1-C-Cin group, which were associated with Hg accumulation, increased NO(x) levels in whole blood, and Na(+)/K(+)-ATPase activities in brain tissues. F1- and F2-Cin-V groups were found to increase brain Hg contents and prominent neurobehavioral defects compared with F1-C-V group, suggesting that the fetal brain was more susceptible to irreversible effects for cinnabar-induced damage. Moreover, F1- and F2-Cin-Cin groups had severely neurobehavioral dysfunctions, closely correlated with the further alteration of NO(x) levels and Na(+)/K(+)-ATPase activities than F1- and F2-C-Cin groups. Effects in F2-Cin-Cin group were more significant than those in F1-Cin-Cin group. In conclusion, this study demonstrates that exposure to low-dose of cinnabar during the perinatal and developmental stages results in irreversible and severe injuries of the neurotoxicity in offspring, and NO(x) and Na(+)/K(+)-ATPase activities may exist potential and useful biomarkers for neurotoxicity-induced by low-doses of mercuric compounds.


Assuntos
Compostos de Mercúrio/administração & dosagem , Compostos de Mercúrio/toxicidade , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/patologia , Neurotoxinas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Limiar Auditivo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Feminino , Audição/efeitos dos fármacos , Tamanho da Ninhada de Vivíparos , Locomoção/efeitos dos fármacos , Masculino , Mercúrio/sangue , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/sangue , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sono/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
11.
Arch Toxicol ; 86(6): 923-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22622864

RESUMO

A pool of myoblasts available for myogenesis is important for skeletal muscle size. The decreased number of skeletal muscle fibers could be due to the decreased myoblast proliferation or cytotoxicity. Identification of toxicants that regulate myoblast apoptosis is important in skeletal muscle development or regeneration. Here, we investigate the cytotoxic effect and its possible mechanisms of arsenic trioxide (As(2)O(3)) on myoblasts. C2C12 myoblasts underwent apoptosis in response to As(2)O(3) (1-10 µM), accompanied by increased Bax/Bcl-2 ratio, decreased mitochondria membrane potential, increased cytochrome c release, increased caspase-3/-9 activity, and increased poly (ADP-ribose) polymerase (PARP) cleavage. Moreover, As(2)O(3) triggered the endoplasmic reticulum (ER) stress indentified through several key molecules of the unfolded protein response, including glucose-regulated protein (GRP)-78, GRP-94, PERK, eIF2α, ATF6, and caspase-12. Pretreatment with antioxidant N-acetylcysteine (NAC, 0.5 mM) dramatically suppressed the increases in reactive oxygen species (ROS), lipid peroxidation, ER stress, caspase cascade activity, and apoptosis in As(2)O(3) (10 µM)-treated myoblasts. Furthermore, As(2)O(3) (10 µM) effectively decreased the phosphorylation of Akt, which could be reversed by NAC. Over-expression of constitutive activation of Akt (c.a. Akt) also significantly attenuated As(2)O(3)-induced myoblast apoptosis. Taken together, these results suggest that As(2)O(3) may exert its cytotoxicity on myoblasts by inducing apoptosis through a ROS-induced mitochondrial dysfunction, ER stress, and Akt inactivation signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Arsênio/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trióxido de Arsênio , Arsenicais , Linhagem Celular , Citotoxinas/toxicidade , Humanos , Mioblastos/metabolismo , Óxidos/toxicidade , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 13(10): 12349-66, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23202902

RESUMO

Mercury is a toxic heavy metal that is an environmental and industrial pollutant throughout the world. Mercury exposure leads to many physiopathological injuries in mammals. However, the precise toxicological effects of mercury on pancreatic islets in vivo are still unclear. Here, we investigated whether mercuric compounds can induce dysfunction and damage in the pancreatic islets of mice, as well as the possible mechanisms involved in this process. Mice were treated with methyl mercuric chloride (MeHgCl, 2 mg/kg) and mercuric chloride (HgCl(2), 5 mg/kg) for more than 2 consecutive weeks. Our results showed that the blood glucose levels increased and plasma insulin secretions decreased in the mice as a consequence of their exposure. A significant number of TUNEL-positive cells were revealed in the islets of mice that were treated with mercury for 2 consecutive weeks, which was accompanied by changes in the expression of the mRNA of anti-apoptotic (Bcl-2, Mcl-1, and Mdm-2) and apoptotic (p53, caspase-3, and caspase-7) genes. Moreover, plasma malondialdehyde (MDA) levels increased significantly in the mice after treatment with mercuric compounds for 2 consecutive weeks, and the generation of reactive oxygen species (ROS) in the pancreatic islets also markedly increased. In addition, the mRNA expression of genes related to antioxidation, including Nrf2, GPx, and NQO1, were also significantly reduced in these islets. These results indicate that oxidative stress injuries that are induced by mercuric compounds can cause pancreatic islets dysfunction and apoptosis in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Animais , Glicemia/análise , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Insulina/sangue , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Cloreto de Mercúrio/química , Compostos de Metilmercúrio/química , Camundongos , Camundongos Endogâmicos ICR , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Oncol Lett ; 23(3): 78, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35111247

RESUMO

Tongue squamous cell carcinoma (SCC) is a most common type of oral cancer. Due to its highly invasive nature and poor survival rate, the development of effective pharmacological therapeutic agents is urgently required. Quercetin (3,3',4',5,7-pentahydroxyflavone) is a polyphenolic flavonoid found in plants and is an active component of Chinese herbal medicine. The present study investigated the pharmacological effects and possible mechanisms of quercetin on apoptosis of the tongue SCC-derived SAS cell line. Following treatment with quercetin, cell viability was assessed via the MTT assay. Apoptotic and necrotic cells, mitochondrial transmembrane potential and caspase-3/7 activity were analyzed via flow cytometric analyses. A caspase-3 activity assay kit was used to detect the expression of caspase-3 activity. Western blot analysis was performed to examine the expression levels of proteins associated with the MAPKs, AMPKα, GSK3-α/ß and caspase-related signaling pathways. The results revealed that quercetin induced morphological alterations and decreased the viability of SAS cells. Quercetin also increased apoptosis-related Annexin V-FITC fluorescence and caspase-3 activity, and induced mitochondria-dependent apoptotic signals, including a decrease in mitochondrial transmembrane potential and Bcl-2 protein expression, and an increase in cytosolic cytochrome c, Bax, Bak, cleaved caspase-3, cleaved caspase-7 and cleaved poly (ADP-ribose) polymerase protein expression. Furthermore, quercetin significantly increased the protein expression levels of phosphorylated (p)-ERK, p-JNK1/2 and p-GSK3-α/ß, but not p-p38 or p-AMPKα in SAS cells. Pretreatment with the pharmacological JNK inhibitor SP600125 effectively reduced the quercetin-induced apoptosis-related signals, as well as p-ERK1/2 and p-GSK3-α/ß protein expression. Both ERK1/2 and GSK3-α/ß inhibitors, PD98059 and LiCl, respectively, could significantly prevent the quercetin-induced phosphorylation of ERK1/2 and GSK3-α/ß, but not JNK activation. Taken together, these results suggested that quercetin may induce tongue SCC cell apoptosis via the JNK-activation-regulated ERK1/2 and GSK3-α/ß-mediated mitochondria-dependent apoptotic signaling pathway.

14.
Biosci Biotechnol Biochem ; 75(12): 2371-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22146730

RESUMO

The maturation of mastoparan B, the major toxin peptide in the venom of Vespa basalis, requires enzymatic cleavage of its prosequence presumably via sequential liberation of dipeptides. The putative processing enzyme, dipeptidyl peptidase IV, was expressed as a glycosylated His-tag fusion protein (rDPP-IV) via the baculovirus expression system. rDPP-IV purified by one-step nickel-affinity chromatography was verified by Western blot and LC-MS/MS analysis. The k(cat)/K(m) of rDPP-IV was determined to be in the range of 10-500 mM(-1)·S(-1) for five synthetic substrates. The optimal temperature and pH for rDPP-IV were determined to be 50 °C and pH 9. Enzymatic activity of rDPP-IV was significantly reduced by 80 and 60% in the presence of sitagliptin and phenylmethylsulfonyl fluoride respectively.


Assuntos
Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Vespas/enzimologia , Vespas/genética , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Linhagem Celular , Cromatografia de Afinidade , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/isolamento & purificação , Expressão Gênica , Dados de Sequência Molecular
15.
Arch Toxicol ; 85(6): 565-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21533816

RESUMO

Arsenic pollution is a major public health problem worldwide. Inorganic arsenic (iAs) is usually more harmful than organic ones. iAs pollution increases the risk of human diseases such as peripheral vascular disease and cancer. However, the toxicological effects of iAs in the brain are mostly unclear. Here, we investigated the toxic effects and possible mechanisms of iAs in the cerebrum of mice after exposure to iAs (0.5 and 5 ppm (mg/l) As(2)O(3), via the drinking water), which was the possible human exposed dose via the ingestion in iAs-contaminated areas, for 6 consecutive weeks. iAs dose-dependently caused an increase of LPO production in the plasma and cerebral cortex. iAs also decreased the reduced glutathione levels and the expressions of NQO1 and GPx mRNA in the cerebral cortex. These impairments in the cerebral cortex caused by iAs exposure were significantly correlated with the accumulation of As. Moreover, iAs induced the production of apoptotic cells and activation of caspase-3, up-regulation of Bax and Bak, and down-regulation of Mcl-1 in the cerebral cortex. Exposure to iAs also triggered the expression of ER stress-related genes, including GRP78, GRP94, and CHOP. Meanwhile, an increase of p38 activation and dephosphorylation of ERK1/2 were shown in the cerebral cortex as a result of iAs-exposed mice. These iAs-induced damages and apoptosis-related signals could be significantly reversed by NAC. Taken together, these results suggest that iAs-induced oxidative stress causes cellular apoptosis in the cerebrum, signaling of p38 and ERK1/2, and ER stress may be involved in iAs-induced cerebral toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Intoxicação por Arsênico/metabolismo , Córtex Cerebral/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óxidos/toxicidade , Acetilcisteína/uso terapêutico , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Intoxicação por Arsênico/sangue , Intoxicação por Arsênico/patologia , Trióxido de Arsênio , Arsenicais/administração & dosagem , Arsenicais/metabolismo , Arsenicais/farmacocinética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacocinética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Peróxidos Lipídicos/sangue , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Oxirredução/efeitos dos fármacos , Óxidos/administração & dosagem , Óxidos/metabolismo , Óxidos/farmacocinética , RNA Mensageiro/metabolismo , Distribuição Aleatória
16.
Neurotoxicology ; 85: 133-144, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34038756

RESUMO

Inorganic arsenic (As3+), a well-known worldwide industrial and environmental pollutant, has been linked to neurodegenerative disorders (NDs). Autophagy plays an important role in controlling neuronal cell survival/death. However, limited information is available regarding the toxicological mechanism at the interplay between autophagy and As3+-induced neurotoxicity. The present study found that As3+ exposure induced a concomitant activation of apoptosis and autophagy in Neuro-2a cells, which was accompanied with the increase of phosphatidylserine exposure on outer membrane leaflets and apoptotic cell population, and the activation of caspase-3, -7, and PARP as well as the elevation of protein expressions of LC3-II, Atg-5, and Beclin-1, and the accumulation of autophagosome. Pretreatment of cells with autophagy inhibitor 3-MA, but not that of Z-VAD-FMK (a pan-caspase inhibitor), effectively prevented the As3+-induced autophagic and apoptotic responses, indicating that As3+-triggered autophagy was contributing to neuronal cell apoptosis. Furthermore, As3+ exposure evoked the dephosphorylation of Akt. Pretreatment with SC79, an Akt activator, could significantly attenuated As3+-induced Akt inactivation as well as autophagic and apoptotic events. Expectedly, inhibition of Akt signaling with LY294002 obviously enhanced As3+-triggered autophagy and apoptosis. Exposure to As3+ also dramatically increased the phosphorylation level of AMPKα. Pretreatment of AMPK inhibitor (Compound C) could markedly abrogate the As3+-induced phosphorylated AMPKα expression, and autophagy and apoptosis activation. Taken together, these results indicated that As3+ exerted its cytotoxicity in neuronal cells via the Akt inactivation/AMPK activation downstream-regulated autophagy-dependent apoptosis pathways, which ultimately lead to cell death. Our findings suggest that the regulation of Akt/AMPK signals may be a promising intervention to against As3+-induced neurotoxicity and NDs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Toxicology ; 455: 152764, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771661

RESUMO

Bisphenol A (BPA) is recognized as a harmful pollutant in the worldwide. Growing studies have reported that BPA can cause adverse effects and diseases in human, and link to a potential risk factor for development of neurodegenerative diseases (NDs). 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which generated in the mammalian liver after BPA exposure, is a major active metabolite of BPA. MBP has been suggested to exert greater toxicity than BPA. However, the molecular mechanism of MBP on the neuronal cytotoxicity remains unclear. In this study, MBP exposure significantly reduced Neuro-2a cell viability and induced apoptotic events that MBP (5-15 µM) exhibited greater neuronal cytotoxicity than BPA (50-100 µM). The mitochondria-dependent apoptotic signals including the decrease in mitochondrial membrane potential (MMP) and the increase in cytosolic apoptosis-induced factor (AIF), cytochrome c release, and Bax protein expression were involved in MBP (10 µM)-induced Neuro-2a cell death. Exposure of Neuro-2a cells to MBP (10 µM) also triggered endoplasmic reticulum (ER) stress through the induction of several key molecules including glucose-regulated protein (GRP)78, C/EBP homologous protein (CHOP), X-box binding protein (XBP)-1, protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme(IRE)-1, activation transcription factor(AFT)4 and ATF6, and caspase-12. Pretreatment with 4-PBA (an ER stress inhibitor) and specific siRNAs for GRP78, CHOP, and XBP-1 significantly suppressed the expression of these ER stress-related proteins and the activation of caspase-12/-3/-7 in MBP-exposed Neuro-2a cells. Furthermore, MBP (10 µM) exposure dramatically increased the activation of extracellular regulated protein (ERK)1/2 and decreased Akt phosphorylation. Pretreatment with PD98059 (an ERK1/2 inhibitor) and transfection with the overexpression of activation of Akt1 (myr-Akt1) effectively suppressed MBP-induced apoptotic and ER stress-related signals. Collectively, these results demonstrate that MBP exposure exerts neuronal cytotoxicity via the interplay of ERK activation and Akt inactivation-regulated mitochondria-dependent and ER stress-triggered apoptotic pathway, which ultimately leads to neuronal cell death.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenóis/toxicidade , Animais , Compostos Benzidrílicos/administração & dosagem , Linhagem Celular Tumoral , Citocromos c/efeitos dos fármacos , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Neurônios/patologia , Fenóis/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Toxicol Appl Pharmacol ; 243(3): 323-31, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20006636

RESUMO

Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl2) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl2 significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl2-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl2 increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl2 possessed ability in apoptosis induction. HgCl2 also displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl2 could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl2 could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl2-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl2-treated HIT-T15 cells. Taken together, these results suggest that HgCl2-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.


Assuntos
Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular , Separação Celular , Cricetinae , DNA/biossíntese , DNA/genética , Citometria de Fluxo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , L-Lactato Desidrogenase/metabolismo , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Necrose , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Toxicol Appl Pharmacol ; 241(2): 173-81, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19695276

RESUMO

Osteoporosis is characterized by low bone mass resulting from an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore, decreased bone formation by osteoblasts may lead to the development of osteoporosis, and rate of apoptosis is responsible for the regulation of bone formation. Arsenic (As) exists ubiquitously in our environment and increases the risk of neurotoxicity, liver injury, peripheral vascular disease and cancer. However, the effect of As on apoptosis of osteoblasts is mostly unknown. Here, we found that As induced cell apoptosis in osteoblastic cell lines (including hFOB, MC3T3-E1 and MG-63) and mouse bone marrow stromal cells (M2-10B4). As also induced upregulation of Bax and Bak, downregulation of Bcl-2 and dysfunction of mitochondria in osteoblasts. As also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosolic-calcium levels. We found that As increased the expression and activities of glucose-regulated protein 78 (GRP78) and calpain. Transfection of cells with GRP78 or calpain siRNA reduced As-mediated cell apoptosis in osteoblasts. Therefore, our results suggest that As increased cell apoptosis in cultured osteoblasts and increased the risk of osteoporosis.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Óxidos/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Animais , Trióxido de Arsênio , Arsenicais , Calpaína/biossíntese , Células Cultivadas , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Genes bcl-2/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteoblastos/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/biossíntese , Proteína X Associada a bcl-2/biossíntese
20.
Toxicology ; 425: 152252, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348969

RESUMO

Cadmium (Cd) is known to be ranked the 7th hazardous substance in the Substance Priority List by Agency for Toxic Substances and Disease Registry. The experimental and epidemiological data have suggested that Cd is linked to the development of diabetes mellitus (DM). The molecular mechanism of Cd on the pancreatic ß-cell cytotoxicity still remains unclear. Evidence has pointed toward that Ca2+ is an important regulator of toxic insult-induced ß-cell cytotoxicity. The role of Ca2+ in the Cd-induced ß-cell cytotoxicity is still unknown. In this study, we found that Cd exposure significantly inhibited insulin secretion and cell viability in the pancreatic ß-cell-derived RIN-m5F cells. Cd exposure induced apoptotic events, including the increased populations of apoptotic cells and sub-G1 hypodiploid cells, and caspase-3/-7/-9 and poly (ADP-ribose) polymerase (PARP) activation, which largely depended on the activation of c-Jun N-terminal kinase (JNK) and C/EBP homologous protein (CHOP). Transfection with siRNAs for JNK and CHOP or pretreatment with specific pharmacological inhibitor of JNK (SP600125) in ß-cells effectively prevented the Cd-induced insulin secretion dysfunction and apoptosis. JNK-specific siRNA dramatically suppressed Cd-induced JNK phosphorylation and CHOP protein expression, but JNK phosphorylation could not be inhibited by CHOP-specific siRNA. Furthermore, Cd exposure significantly increased the intracellular calcium ([Ca2+]i) levels. Buffering the Ca2+ response with BAPTA/AM effectively abrogated the Cd-induced [Ca2+]i elevation, insulin secretion dysfunction, apoptosis, and protein expression of JNK phosphorylation and CHOP activation. Taken together, these findings demonstrated that Cd exposure exerts ß-cell death via a [Ca2+]i-dependent JNK activation-activated downstream CHOP-related apoptotic signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA