RESUMO
The relationship between initial Homo sapiens dispersal from Africa to East Asia and the orbitally paced evolution of the Asian summer monsoon (ASM)-currently the largest monsoon system-remains underexplored due to lack of coordinated synthesis of both Asian paleoanthropological and paleoclimatic data. Here, we investigate orbital-scale ASM dynamics during the last 280 thousand years (kyr) and their likely influences on early H. sapiens dispersal to East Asia, through a unique integration of i) new centennial-resolution ASM records from the Chinese Loess Plateau, ii) model-based East Asian hydroclimatic reconstructions, iii) paleoanthropological data compilations, and iv) global H. sapiens habitat suitability simulations. Our combined proxy- and model-based reconstructions suggest that ASM precipitation responded to a combination of Northern Hemisphere ice volume, greenhouse gas, and regional summer insolation forcing, with cooccurring primary orbital cycles of ~100-kyr, 41-kyr, and ~20-kyr. Between ~125 and 70 kyr ago, summer monsoon rains and temperatures increased in vast areas across Asia. This episode coincides with the earliest H. sapiens fossil occurrence at multiple localities in East Asia. Following the transcontinental increase in simulated habitat suitability, we suggest that ASM strengthening together with Southeast African climate deterioration may have promoted the initial H. sapiens dispersal from their African homeland to remote East Asia during the last interglacial.
Assuntos
Povo Asiático , Migração Humana , Tempo (Meteorologia) , Humanos , África , Ásia , Ásia OrientalRESUMO
A high-precision geologic time scale is the essential key for understanding the Earth's evolutionary history and geologic processes. Astronomical tuning of orbitally forced stratigraphic records to construct high-resolution Astronomical Time Scales (ATS) has led to a progressive refinement of the geologic time scale over the past two decades. In turn, these studies provide new insights regarding the durations and rates of major Earth events, evolutionary processes, and climate changes, all of which provide a scientific basis for contextualizing and predicting future global change trends. South China hosts some of the best-exposed and well-dated Neoproterozoic through Mesozoic stratigraphic sections in the world; many of which are suitable for cyclostratigraphy and calibrating the geologic time scale. In North China, several Cenozoic oil-bearing basins have deep boreholes with continuous sampling and/or well logging that enable derivation of astronomically tuned time scales for an improved understanding of basin evolution and hydrocarbon generation. This Special Issue focuses on case studies of astrochronology and applied cyclostratigraphy research using reference sections within China. In this introductory overview, we: (1) summarize all existing astrochronology studies of the Neoproterozoic through Cenozoic sections within China that have been used to enhance the international geologic time scale, (2) examine briefly the astronomically forced paleoclimate information recorded in various depositional systems and the modern techniques employed to analyze the periodicity of these signals encoded within the sedimentary record, and (3) summarize the 20 contributions to this Special Issue of Palaeogeography, Palaeoclimatology, Palaeoecology on 'Cyclostratigraphy and Astrochronology: Case studies from China'.
RESUMO
Extreme hydrologic events such as storms and floods have the potential to severely impact modern human society. However, the frequency of storms and their underlying mechanisms are limited by a paucity of suitable proxies, especially in inland areas. Here we present a record of speleothem magnetic minerals to reconstruct paleoprecipitation, including storms, in the eastern Asian monsoon area over the last 8.6 ky. The geophysical parameter IRMsoft-flux represents the flux of soil-derived magnetic minerals preserved in stalagmite HS4, which we correlate with rainfall amount and intensity. IRMsoft-flux exhibits relatively higher values before 6.7 ky and after 3.4 ky and lower values in the intervening period, consistent with regional hydrological changes observed in independent records. Abrupt enhancements in the flux of pedogenic magnetite in the stalagmite agree well with the timing of known regional paleofloods and with equatorial El Niño-Southern Oscillation (ENSO) patterns, documenting the occurrence of ENSO-related storms in the Holocene. Spectral power analyses reveal that the storms occur on a significant 500-y cycle, coincident with periodic solar activity and ENSO variance, showing that reinforced (subdued) storms in central China correspond to reduced (increased) solar activity and amplified (damped) ENSO. Thus, the magnetic minerals in speleothem HS4 preserve a record of the cyclic storms controlled by the coupled atmosphere-oceanic circulation driven by solar activity.
RESUMO
The Internet of Underwater Things (IoUT) is a novel class of Internet of Things (IoT), and is defined as the network of smart interconnected underwater objects. IoUT is expected to enable various practical applications, such as environmental monitoring, underwater exploration, and disaster prevention. With these applications, IoUT is regarded as one of the potential technologies toward developing smart cities. To support the concept of IoUT, Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising network system. UWSNs are different from the traditional Territorial Wireless Sensor Networks (TWSNs), and have several unique properties, such as long propagation delay, narrow bandwidth, and low reliability. These unique properties would be great challenges for IoUT. In this paper, we provide a comprehensive study of IoUT, and the main contributions of this paper are threefold: (1) we introduce and classify the practical underwater applications that can highlight the importance of IoUT; (2) we point out the differences between UWSNs and traditional TWSNs, and these differences are the main challenges for IoUT; and (3) we investigate and evaluate the channel models, which are the technical core for designing reliable communication protocols on IoUT.
RESUMO
PURPOSE: To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. METHODS: A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass-spring-damper model. This research derived the dynamic model of a water-filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis(®) ST, it was then possible to extract multiple physiological properties as desired. RESULTS: The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi-goal minimisation processes. CONCLUSIONS: The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means.
Assuntos
Córnea/fisiologia , Módulo de Elasticidade/fisiologia , Fenômenos Fisiológicos Oculares , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Tonometria Ocular/métodos , Adulto JovemRESUMO
Previous research showed that pop music bands in the Western world have sometimes included science imagery in their lyrics. Their songs could potentially be helpful facilitators for science communication and public engagement purposes. However, so far no systematic research has been conducted for investigating science in popular music in Eastern cultures. This study explores whether science has been regarded as an element in the creation of popular mainstream music, and examines the content and quantity of distribution through an analysis of mainstream music lyrics, to reflect on the conditions of the absorption of science into popular culture. The results indicate that expressions related to astronomy and space science feature very prominently. Most of the lyrics are connected to emotional states and mood expressions and they are only very rarely related to actual issues of science. The implications for science communication and further research are discussed in the final section.
Assuntos
Disseminação de Informação , Música/psicologia , Ciência/educação , Cultura , Emoções , Humanos , Canto , TaiwanRESUMO
Characterization of transport pathways and depositional changes in Mercury (Hg) and their connection to climatic and environmental changes on various time scales are crucial for better understanding the anthropogenic impacts on the global Hg cycle in the Anthropocene epoch. In this study, we examined Hg variations recorded in a stalagmite from central China, covering the period from 25.5 to 10.9 thousand years ago. Our data show a marked increase in Hg concentrations during the late Last Glacial Maximum, which coincided with the period of highest dust deposition on the Chinese Loess Plateau. Hg concentrations were lower during Heinrich events 1 and 2 and the Younger Dryas but higher during the Bølling-Allerød and the early Holocene. We suggest that regional dust load, which enhances atmospheric dry deposition of Hg, is the primary factor influencing Hg deposition in central China on glacial-interglacial timescales. On millennial-to-centennial timescales, climate also plays a significant role. Warmer and wetter conditions increase vegetation, litterfall, and soil/rock weathering, which in turn boost mineral dissolution and soil erosion in the vadose zone. These processes collectively result in higher Hg concentrations in the stalagmite.
RESUMO
Intensification of northern hemisphere glaciation (iNHG), ~2.7 million years ago (Ma), led to establishment of the Pleistocene to present-day bipolar icehouse state. Here we document evolution of orbital- and millennial-scale Asian winter monsoon (AWM) variability across the iNHG using a palaeomagnetically dated centennial-resolution grain size record between 3.6 and 1.9 Ma from a previously undescribed loess-palaeosol/red clay section on the central Chinese Loess Plateau. We find that the late Pliocene-early Pleistocene AWM was characterized by combined 41-kyr and ~100-kyr cycles, in response to ice volume and atmospheric CO2 forcing. Northern hemisphere ice sheet expansion, which was accompanied by an atmospheric CO2 concentration decline, substantially increased glacial AWM intensity and its orbitally oscillating amplitudes across the iNHG. Superposed on orbital variability, we find that millennial AWM intensity fluctuations persisted during both the warmer (higher-CO2) late Pliocene and colder (lower-CO2) early Pleistocene, in response to both external astronomical forcing and internal climate dynamics.
RESUMO
The first major build-up of Antarctic glaciation occurred in two consecutive stages across the Eocene-Oligocene transition (EOT): the EOT-1 cooling event at ~34.1-33.9 Ma and the Oi-1 glaciation event at ~33.8-33.6 Ma. Detailed orbital-scale terrestrial environmental responses to these events remain poorly known. Here we present magnetic and geochemical climate records from the northeastern Tibetan Plateau margin that are dated precisely from ~35.5 to 31 Ma by combined magneto- and astro-chronology. These records suggest a hydroclimate transition at ~33.7 Ma from eccentricity dominated cycles to oscillations paced by a combination of eccentricity, obliquity, and precession, and confirm that major Asian aridification and cooling occurred at Oi-1. We conclude that this terrestrial orbital response transition coincided with a similar transition in the marine benthic δ18O record for global ice volume and deep-sea temperature variations. The dramatic reorganization of the Asian climate system coincident with Oi-1 was, thus, a response to coeval atmospheric CO2 decline and continental-scale Antarctic glaciation.
RESUMO
Nearly 90% of the Ediacaran Period (635-541â¯Ma) of the Neoproterozoic is represented by the Doushantuo Formation (DST Fm) in South China. Its lowest Member I is a 3.7â¯m-thick cap carbonate deposited at the termination of the Cryogenian Marinoan glaciation. The DST Fm consists of alternating organic-rich black shale and thinly bedded dolostone, and it contains some of the oldest records of multi-cellular life and three pronounced negative carbon isotope excursions. The Jiulongwan (JLW) section is a well-studied reference section for these Ediacaran events. Spectral analysis of geochemical data through the lower DST Fm (22.3â¯m) shows 27 predominant â¼90â¯cm sedimentary cycles that correspond to 405-ka long eccentricity cycles. The power spectra of the 405-ka tuned Ca and Fe/Ti series show significant peaks at â¼1.2-Ma, 405-ka, 133-ka, 128-ka, 100-ka, 82-ka, â¼31-ka and 29-ka periods, respectively. A 11.16â¯Ma-long astronomical time scale has been constructed for the lower DST Fm and provide a duration of 1.6â¯Ma for the cap carbonate (Member I) based on the 405-ka long eccentricity cycle tuning. Using the U-Pb age of 635.2⯱â¯0.6â¯Ma for the volcanic ash bed at the Member I/II boundary, we proposed a 636.8â¯Ma age for the base of the DST Fm. These ages and astronomical timescale provide important new constraints on the subdivision of Ediacaran strata, and have implications for understanding the character of the first negative δ13C excursion (EN1). Orbital forcing may have been played an important role for the climate changes and the evolution of Ediacaran multi-cellular life and the carbon cycle variations.
RESUMO
In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ1). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global sea-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass exchange between land and ocean reservoirs is a missing link for reconciling geological records and models for sea-level change during non-glacial periods.
RESUMO
Current intraocular pressure (IOP) measurement using air puff could be erroneous without applying proper corrections. Although noncontact tonometry is not considered to be accurate, it is still popularly used by eye clinics. It is thus necessary to extract the correct information from their results. This study proposes a practical approach to correctly measure IOP in vivo. By embedding a new model-based correction to the Corvis® ST, we can extract the corneal Young's modulus from the patient data. This Young's modulus can be used to correct the IOP readings. The tests were applied to 536 right eyes of 536 healthy subjects (228 male and 308 female) between March of 2012 and April of 2016. The tests were applied to patients at the Department of Ophthalmology, National Taiwan University Hospital and the Hung-Chuo Eye Clinics. The statistical analysis showed that the value for the Young's modulus was independent of all the other parameters collected from the Corvis ST, including the corneal thickness and the intraocular pressure. Therefore, it is important to independently measure the Young's modulus instead of depending on the correlation with the other parameters. This study adds the methodology of measuring corneal stiffness in vivo for ophthalmologists' reference in diagnosis.