Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 192: 105385, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105627

RESUMO

MIR162, a maize event that expresses Vip3Aa20 (Vip3A) approved for commercial cultivation around 2010, has been excellent for control of major Lepidopteran pests. However, development of fall armyworm (FAW) resistance to Vip3A is a serious concern. Resistant colonies selected in the laboratory can serve as valuable tools not only for better understanding of Vip3A's mode of action (MOA) and mechanism of resistance (MOR) but also for screening novel leads of new MOA that will help control FAW in case resistance to Vip3A in the field becomes a reality. We selected a Vip3A-resistant FAW strain, FAWVip3AR, by subjecting a FAW founder population containing field genetics to Vip3A exposure. FAWVip3AR had >9800-fold resistance to Vip3A by diet surface overlay bioassays and resistance was stable. Feeding bioassays using detached leaf tissues or whole plants indicated that FAWVip3AR larvae readily fed and completed the full life cycle on Vip3A-expressing MIR162 maize plants and leaf tissues that killed 100% of susceptible larvae. Yet, FAWVip3AR faced at least two challenges. First, FAWVip3AR suffered an apparent disadvantage (incomplete resistance) when feeding on MIR162 in comparison to FAWVip3AR feeding on Vip3A-free isoline AX5707 maize; and second, FAWVip3AR showed a fitness costs in comparison to a Vip3A-susceptible strain when both fed on AX5707. We also demonstrated that, >10 years after commercialization, MIR162 and Vip3A remain highly efficacious against field populations of three major Lepidopteran pests from different geographic locations and FAW strains resistant to other Bacillus thuringiensis (Bt) toxins that are currently on the market.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Zea mays/genética , Plantas Geneticamente Modificadas , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Larva/genética , Toxinas de Bacillus thuringiensis , Endotoxinas/farmacologia , Resistência a Inseticidas/genética , Proteínas Hemolisinas/farmacologia
2.
BMC Genomics ; 22(1): 179, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711916

RESUMO

BACKGROUND: The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. RESULTS: In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. CONCLUSIONS: Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.


Assuntos
Fluxo Gênico , Zea mays , Animais , Brasil , Humanos , Quênia , Spodoptera , Zea mays/genética
3.
J Invertebr Pathol ; 183: 107560, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33631194

RESUMO

Previous studies have reported that the corn earworm/bollworm, Helicoverpa zea (Boddie), has developed field resistance to pyramided Bacillus thuringiensis (Bt) Cry1A/Cry2A maize and cotton in certain areas of the southeastern United States. The objective of the current study was to determine the current status and distribution of the resistance to Cry1A.105 and Cry2Ab2 in H. zea. In the study, 31 H. zea populations were collected from major maize planting areas across seven southeastern states of the United States during 2018 and 2019 and assayed against the two Bt proteins. Diet over-lay bioassays showed that most of the populations collected during the two years were significantly resistant to the Cry1A.105 protein. Most of the populations collected during 2019 were also resistant to Cry2Ab2, while significant variances were observed in the susceptibility of the populations collected during 2018 to Cry2Ab2. The results showed that Cry1A.105 and Cry2Ab2 resistance in H. zea is widely distributed in the regions sampled. The resistance to Cry1A.105 appeared to have plateaued, while selection for Cry2Ab2 resistance is likely still occurring. Thus, effective measures for mitigating the Cry1A/Cry2A resistance need to be developed and implemented to ensure the sustainable use of Bt crop biotechnology.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Bacillus thuringiensis/química , Agentes de Controle Biológico/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Sudeste dos Estados Unidos
4.
J Invertebr Pathol ; 163: 11-20, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825480

RESUMO

The corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), is a major target pest of pyramided Bt maize and cotton in the U.S. In 2017 and 2018, notable ear damage and larval survival of H. zea were observed on pyramided Cry1A.105/Cry2Ab2 maize in some fields in northeast Louisiana, U.S. The objective of this study was to determine if the field control problem was due to resistance development to the Bt proteins in plants. A total of 15 H. zea populations were collected from Bt and non-Bt maize plants in 2017 and 2018 in multiple locations in Louisiana, Florida, and Georgia. Diet-overlay bioassays showed that LC50s of Cry1A.105 and Cry2Ab2 for populations collected from the areas with control problems in northeast Louisiana were as much as >1623- and 88-fold greater than that of a susceptible strain, respectively. In addition, two field trials in 2018 validated that Cry1A.105/Cry2Ab2 maize failed in managing natural H. zea populations, while Bt maize containing Vip3A was effective in northeast Louisiana. Results of the study documented that the observed field control problems of Cry1A.105/Cry2Ab2 maize against H. zea in northeast Louisiana were due to resistance development of the insect to the Bt proteins in plants. This is the first documentation of field-evolved resistance to pyramided Bt maize in a target insect species in southern U.S. However, susceptibility levels to Cry1A.105 and Cry2Ab2 varied greatly among populations collected from the three states, suggesting uneven distributions of the resistance in the region.


Assuntos
Proteínas de Bactérias , Produtos Agrícolas , Endotoxinas , Proteínas Hemolisinas , Resistência a Inseticidas , Mariposas , Controle Biológico de Vetores , Animais , Toxinas de Bacillus thuringiensis , Florida , Genes Bacterianos , Larva/metabolismo , Louisiana , Mariposas/metabolismo , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas , Estados Unidos , Zea mays/genética
5.
J Invertebr Pathol ; 159: 105-112, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30291865

RESUMO

We simulated larval feeding behavior in seed blends of non-Bt and Bt maize to determine if seed blends create more favorable conditions for heterozygous-resistant insects over their Bt-susceptible counterparts. Survival, growth, development, and progeny production of four genotypes of the fall armyworm, Spodoptera frugiperda, Bt-susceptible (aabb), Cry1A.105 heterozygous resistant (Aabb), Cry2Ab2 heterozygous resistant (aaBb), and Cry1A.105/Cry2Ab2 heterozygous resistant (AaBb), were evaluated in eight feeding sequences (Seq 1-8) of non-Bt and MON89034 Bt maize leaf tissue expressing the Cry1A.105 and Cry2Ab2 proteins. We report variation in the performance of the four genotypes across the feeding sequences and biological parameters measured. Three heterozygous genotypes generally outperformed the susceptible genotype in larval survival, pupation rate, pupal weight, and progeny production. The performance was greater for Aabb over aaBb, AaBb over Aabb or aaBb, in two of the feeding sequences. The findings of this study could have important implications in assessing the risk of seed blends as refuge plantings for Bt crop resistance management where resistance in the target pest is not functionally recessive.


Assuntos
Resistência a Inseticidas/genética , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/parasitologia , Spodoptera/genética , Zea mays/parasitologia , Alelos , Animais , Toxinas Bacterianas/genética , Genótipo , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas/genética
6.
J Invertebr Pathol ; 149: 8-14, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28676378

RESUMO

Cry2Ab2 is a Bacillus thuringiensis (Bt) protein expressed in transgenic corn and cotton targeting above-ground lepidopteran pests including the fall armyworm, Spodoptera frugiperda (J.E. Smith). The objective of this study was to characterize fitness costs and inheritance of Cry2Ab2 resistance in S. frugiperda. To determine if fitness costs were associated with the resistance, life history parameters (larval survival, growth, development and egg production) of Cry2Ab2-resistant, -susceptible, and two reciprocal F1 colonies of S. frugiperda were assayed on non-toxic diet and non-Bt corn leaf tissue. The results showed that there were no significant differences among the four insect colonies for all the biological parameters measured with few exceptions, suggesting that the resistance in the colony was not associated with significant fitness costs in the test conditions. To examine the inheritance of resistance, susceptibilities of the resistant and susceptible parents, as well as eight additional colonies generated from various genetic crosses, were assayed using Cry2Ab2-treated diet and Cry2Ab2 corn leaf tissue. The Cry2Ab2 resistance in S. frugiperda in the colony was inherited as a single autosomal recessive or incompletely recessive gene. The results of the study suggest a potential risk of resistance development in S. frugiperda to the Cry2Ab2 protein and thus effective management strategies should be implemented for the sustainable use of the Bt corn technology for pest management.


Assuntos
Bacillus thuringiensis/genética , Proteínas Hemolisinas/genética , Controle de Insetos/métodos , Resistência a Inseticidas/genética , Spodoptera/genética , Animais , Plantas Geneticamente Modificadas/genética
7.
J Invertebr Pathol ; 146: 47-52, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28392284

RESUMO

The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bacillus thuringiensis (Bt) maize and cotton in America. Since the commercialization of Cry1F maize (event TC1507) in 2003, resistance to Cry1F maize in field populations of S. frugiperda has occurred in Puerto Rico, Brazil and the southeast region of the United States. In this paper, we conducted a comparative analysis of the inheritance of two Cry1F-resistant colonies of S. frugiperda originated from Puerto Rico (PR) and Florida (FL), respectively. The objective of the analysis was to determine if the genetic basis of the resistance was similar in the two different originated colonies. To accomplish the objective, besides PR, FL, and a known Cry1F-susceptible colony, 14 additional colonies were developed by reciprocal crosses among the three parents, F1 by F1 crosses, backcrosses, and intercolony-crosses between PR and FL. Larval mortalities of the 17 colonies were assayed on both Cry1F maize leaf tissue and Cry1F-treated diet at the concentrations of 3.16, 10.00, and 31.60µg/g. Resistance to Cry1F in both PR and FL was autosomal and recessive or incompletely recessive. Segregations in F2 and backcrossed generations associated with FL fitted the Mendelian monogenic model well, while with PR the segregations did not follow the single gene model in some bioassays. Further analyses with the intercolony complementation tests showed a similar level of resistance in the F1 progeny as their parents FL and PR. Together with the data, it was likely that a single (or a few tightly-linked) gene was involved in FL; PR shared the same locus of the major resistance gene as FL, but the resistance in PR might also be associated with additional minor factors. Information generated from this study should be useful in understanding the origin of Cry1F resistance in the U.S. mainland and developing effective strategies for Bt resistance management in S. frugiperda.


Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Resistência a Inseticidas/genética , Spodoptera/genética , Animais , Toxinas de Bacillus thuringiensis , Florida , Modelos Genéticos , Porto Rico , Spodoptera/microbiologia
8.
J Invertebr Pathol ; 138: 66-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27311896

RESUMO

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target pest of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South America. In 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were established using single-pair mating of field individuals collected from seven locations in four states of the southern U.S.: Texas, Louisiana, Georgia, and Florida. The objective of the investigation was to detect resistance alleles in field populations to Cry2Ab2, a common Bt protein produced in transgenic maize and cotton. For each F2 family, 128 F2 neonates were screened on leaf tissue of Cry2Ab2 maize plants in the laboratory. A conservative estimate of the frequency of major Cry2Ab2 resistance alleles in S. frugiperda from the four states was 0.0023 with a 95% credibility interval of 0.0003-0.0064. In addition, six families were considered to likely possess minor resistance alleles at a frequency of 0.0082 with a 95% credibility interval of 0.0033-0.0152. One F2 family from Georgia (GA-15) was confirmed to possess a major resistance allele to the Cry2Ab2 protein. Larvae from this family survived well on whole maize plants expressing Cry2Ab2 protein and demonstrated a significant level (>15-fold) of resistance when fed with the same protein incorporated in a meridic diet. The detection of the major resistance allele along with the relatively abundant minor resistance alleles revealed in this study may have important implications for resistance management.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Plantas Geneticamente Modificadas/parasitologia , Spodoptera/genética , Zea mays/genética , Zea mays/parasitologia , Animais , Toxinas de Bacillus thuringiensis , Plantas Geneticamente Modificadas/genética , Estados Unidos
9.
J Invertebr Pathol ; 127: 81-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25791021

RESUMO

The development of resistance in target pest populations is a threat to the sustainability of transgenic crops expressing Bacillus thuringiensis (Bt) proteins. Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt maize in North and South America. This insect is the first target pest that has developed field resistance to Bt maize at multiple locations in these regions. The objective of this study was to assess the fitness costs associated with the Cry1F resistance in two populations of S. frugiperda collected from Puerto Rico (RR-PR) and Florida (RR-FL). In the study, fitness costs were evaluated by comparing survival, growth, and developmental time of seven populations of S. frugiperda on (1) non-Bt meridic diet and (2) non-Bt maize leaf tissue and non-Bt diet. The seven populations were RR-PR, RR-FL, a Bt-susceptible strain (Bt-SS), and four F1 populations developed from reciprocal crosses between Bt-SS and the two resistant populations. Biological parameters measured were neonate-to-adult survivorship, neonate-to-adult developmental time, 10day larval weight on non-Bt maize leaf tissue, pupal weight, and sex ratios. Results of the study show that the Cry1F resistance in both RR-PR and RR-FL was associated with considerable fitness costs, especially for the Florida population. Compared to the Bt-susceptible population, RR-PR showed an average of 61.1% reduction in larval weight, 20.4% less in neonate-to-adult survivorship, and 3.7days delay in neonate-to-adult developmental time. These fitness costs for RR-FL were 66.9%, 31.7% and 4.4days, respectively. The fitness costs of RR-PR and RR-FL appeared to be non-recessive. The results indicate that a diversified genetic basis may exist for the Cry1F resistance in S. frugiperda.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Spodoptera/fisiologia , Animais , Toxinas de Bacillus thuringiensis , Florida , Plantas Geneticamente Modificadas , Porto Rico
10.
J Invertebr Pathol ; 130: 116-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26205174

RESUMO

The sugarcane borer, Diatraea saccharalis (F.), is one of the major target pests of transgenic maize, Zea mays, expressing Bacillus thuringiensis (Bt) proteins in South America and mid-southern region of the U.S. The MON89034 maize expresses Cry2Ab2 and Cry1A.105 Bt proteins and it was developed to provide better control of key lepidopteran pests of maize including D. saccharalis. The objectives of this study were to select and characterize the resistance of D. saccharalis to Cry2Ab2 using a non-commercial Cry2Ab2 single gene Bt maize line. A Cry2Ab2-resistant strain (Cry2Ab2-RR) of D. saccharalis was established from 28 two-parent families collected from fields in northeast Louisiana, U.S. The Cry2Ab2-RR showed a high level of resistance to Cry2Ab2 in both diet-incorporated and whole maize plant bioassays. The Cry2Ab2 resistance in D. saccharalis was likely inherited as a single or a few tightly linked autosomal genes. The resistance was non-recessive and not associated with fitness costs. The results should provide valuable information in resistance monitoring, assessing resistance risk, and developing effective management strategies for the sustainable use of Bt maize technology for managing maize stalk borers.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Mariposas/genética , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética , Zea mays/parasitologia , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Zea mays/genética
11.
Pestic Biochem Physiol ; 122: 15-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26071802

RESUMO

Fall armyworm (FAW) is a damaging pest of many economic crops. Long-term use of chemical control prompted resistance development to many insecticide classes. Many populations were found to be significantly less susceptible to major Bt toxins expressed in transgenic crops. In this study, a FAW strain collected from Puerto Rico (PR) with 7717-fold Cry1F-resistance was examined to determine if it had also developed multiple/cross resistance to non-Bt insecticides. Dose response assays showed that the PR strain developed 19-fold resistance to acephate. Besides having a slightly smaller larval body weight and length, PR also evolved a deep (2.8%) molecular divergence in mitochondrial oxidase subunit II. Further examination of enzyme activities in the midgut of PR larvae exhibited substantial decreases of alkaline phosphatase (ALP), aminopeptidase (APN), 1-NA- and 2-NA-specific esterase, trypsin, and chymotrypsin activities, and significant increases of PNPA-specific esterase and glutathione S-transferase (GST) activities. When enzyme preparations from the whole larval body were examined, all three esterase, GST, trypsin, and chymotrypsin activities were significantly elevated in the PR strain, while ALP and APN activities were not significantly different from those of susceptible strain. Data indicated that multiple/cross resistances may have developed in the PR strain to both Bt toxins and conventional insecticides. Consistently reduced ALP provided evidence to support an ALP-mediated Bt resistance mechanism. Esterases and GSTs may be associated with acephate resistance through elevated metabolic detoxification. Further studies are needed to clarify whether and how esterases, GSTs, and other enzymes (such as P450s) are involved in cross resistance development to Bt and other insecticide classes.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Organofosfatos/farmacologia , Spodoptera/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Sequência de Bases , Resistência a Múltiplos Medicamentos/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Endotoxinas/genética , Enzimas/metabolismo , Glutationa Transferase/metabolismo , Proteínas Hemolisinas/genética , Inativação Metabólica , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Compostos Organotiofosforados/farmacologia , Fosforamidas/farmacologia , Porto Rico , Spodoptera/genética , Spodoptera/metabolismo
12.
J Invertebr Pathol ; 117: 26-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24503242

RESUMO

The sugarcane borer, Diatraea saccharalis (F.), is a major target species of transgenic corn expressing Bacillus thuringiensis (Bt) proteins in South America and the U.S. mid-south region. In this study, the fitness of seven insect genotypes of D. saccharalis were assayed on non-toxic diet, which included a Cry1Ab-susceptible strain (SS-2009), two Cry1Ab-resistant strains (RR-43A(BC), RR-L5B(BC)), and four F1 hybrids (F1-R43A(m)S(f), F1-R43A(f)S(m), F1-R5B(m)S(f), and F1-R5B(f)S(m)). The F1 hybrids were generated by reciprocal crosses of SS-2009 with RR-43ABC and RR-L5BBC, respectively. Biological parameters measured were neonate-to-pupa survivorship, neonate-to-pupa development time, pupal mass, pupa-to-adult emergence rate, and progeny (neonates) production. The overall performance of the two resistant strains and the four F1 genotypes was either similar or better than SS-2009 for all biological parameters measured, suggesting a lack of fitness costs associated with the Cry1Ab resistance traits in both RR-43A(BC) and RR-L5B(BC). In addition, resistance stability was evaluated by measuring the Cry1Ab susceptibility of RR-43A(BC) and RR-L5B(BC) in the absence of selection pressure. Laboratory bioassays showed that larval mortality of the two resistant strains did not significantly increase after selection pressure was removed for 16 generations across all Cry1Ab concentrations assayed. The results provide valuable information on assessing resistance risk and developing effective management strategies for the sustainable use of Bt corn technology.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Aptidão Genética/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Lepidópteros/genética , Animais , Toxinas de Bacillus thuringiensis , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética
13.
J Econ Entomol ; 107(1): 417-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665728

RESUMO

Hessian fly, Mayetiola destructor (Say, 1817), is a major pest of wheat, and is controlled mainly through deploying fly-resistant wheat cultivars. The challenge for the plant resistance approach is that virulence of Hessian fly populations in the field is dynamic, and wheat cultivars may lose resistance within 6-8 yr. To ensure continuous success of host plant resistance, Hessian fly populations in the field need to be constantly monitored to determine which resistance genes remain effective in different geographic regions. This study investigated five Hessian fly populations collected from Texas, Louisiana, and Oklahoma, where infestation by Hessian fly has been high in recent years. Eight resistance genes, H12, H13, H17, H18, H22, H25, H26, and Hdic, were found to be highly effective against all tested Hessian fly populations in this region, conferring resistance to > or = 80% of plants containing one of these resistance genes. The frequencies ofbiotypes virulent to resistance genes H13 (biotype vH13), H18 (vH18), H21 (vH21), H25 (vH25), H26 (vH26), and Hdic (vHdic) were determined, and were found to vary from population to population, ranging from 0 to 45%. A logistic regression model was established to predict biotype frequencies based on the correlation between the percentages of susceptible plants obtained in a virulence test and the log-odds of virulent biotype frequencies determined by a traditional approach.


Assuntos
Dípteros/patogenicidade , Triticum/genética , Animais , Feminino , Estados Unidos
14.
Insects ; 15(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667419

RESUMO

The polyphagous fall armyworm (FAW), Spodoptera frugiperda, has become an invasive pest worldwide in recent years. To develop maize germplasm with multiple pest resistance and understand genetic inheritance, 12 experimental hybrids (six pairs of reciprocal crosses) with diverse genetic backgrounds and four commercial checks were examined for FAW resistance in 2013 and 2014. The experiment utilized a randomized complete block design with four replications as the block factor. FAW injury on maize plants was assessed at 7 and 14 d after the artificial infestation at the V6 stage, and predatory arthropod taxa and abundance on maize seedlings were recorded 7 d after the infestation. Spodoptera frugiperda resistance varied significantly among the 16 hybrids. Two reciprocal crosses ('FAW1430' × 'Oh43' and 'CML333' × 'NC358') showed the least FAW injury. Eleven arthropod predators [i.e., six coleopterans, three hemipterans, earwigs (dermapterans), and spiders (or arachnids)] were also recorded; the two most common predators were the pink spotted ladybeetle, Coleomegilla maculata, and the insidious flower (or minute pirate) bug, Orius spp. Predator abundance was not correlated to FAW injury but varied greatly between 2013 and 2014. Principal component analysis demonstrated that, when compared with FAW resistant (or Bt-transgenic) checks ('DKC69-71', 'DKC67-88', and 'P31P42'), five pairs of the reciprocal crosses had moderate FAW resistance, whereas a pair of reciprocal crosses ('NC350' × 'NC358' and NC358 × NC350) showed the same FAW susceptibility as the non-Bt susceptible check 'DKC69-72'. Both parents contributed similarly to FAW resistance, or no maternal/cytoplasmic effect was detected in the experimental hybrids.

15.
J Invertebr Pathol ; 112(3): 267-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23270874

RESUMO

Sugarcane borer, Diatraea saccharalis (F.), is a major target of Bt maize in South America and many areas of the US mid-south region. Six laboratory strains of D. saccharalis were established from six single-pair F(2) families possessing major resistance alleles to Cry1Ab maize hybrids. Susceptibility of the six strains was evaluated on diet treated with each of four purified trypsin-activated Bt proteins, Cry1Ab, Cry1Aa, Cry1Ac and Cry1F. Bt susceptibility of the six strains was compared with that of known Cry1Ab-susceptible and -resistant strains of D. saccharalis. At least two of the six strains demonstrated a similar level (>526-fold) of resistance to Cry1Ab as shown in the known Cry1Ab-resistant strain, while resistance levels were relatively lower for other strains (116- to 129-fold). All the six strains were highly cross-resistant to Cry1Aa (71- to 292-fold) and Cry1Ac (30- to 248-fold), but only with a low level to Cry1F (<7-fold). Larval growth of all six strains was also inhibited on Bt-treated diet, but, except for Cry1F, the growth inhibition of the six strains was considerably less than that of the Cry1Ab-susceptible larvae. The results provide clear evidence that the observed resistance to Cry1Ab maize in the six strains is a result of resistance to the Cry1Ab protein in the plants. The low level of cross-resistance between Cry1A and Cry1F suggests that pyramiding these two types of Bt proteins into a plant could be a good strategy for managing D. saccharalis.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Inseticidas , Mariposas , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Larva
16.
J Invertebr Pathol ; 114(3): 234-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999243

RESUMO

The European (Ostrinia nubilalis Hübner) and Asian corn borers (Ostrinia furnacalis Guenée) are closely related and display similar sensitivity to Cry1 toxins. In this study, we compared the binding patterns of Cry1Ab and Cry1F toxins between both Ostrinia spp., as well as the expression of putative cadherin- and aminopeptidase-N (APN)-like protein receptors. Additionally, cDNA sequences of these putative toxin receptors from both Ostrinia species were compared. Ligand blots for both species indicated a similar binding pattern for Cry1Ab with the strongest immunoreactive band at 260 kDa in both species. In addition, similar expression of the putative cadherin- and APN-like protein receptors were observed at 260 and 135 kDa, respectively. A high degree of similarity (98% amino acid sequence identity) of cDNA sequences for both putative receptor sequences was observed. The Cry1F ligand blot revealed that O. furnacalis and O. nubilalis BBMV exhibited slightly different binding patterns, with strong binding to putative proteins at 150 and 140 kDa, respectively. Both proteins appeared to also bind Cry1Ab, although the signal intensity was much reduced with Cry1Ab. O. furnacalis showed an additional but weaker band at 210 kDa relative to the 150 kDa band. Diatraea saccharalis (Fabricius), which was used as an outgroup species, exhibited different binding patterns than either Ostrinia species, with both Cry1Ab and Cry1F toxins binding to a 210 kDa protein. These results support the previous experiments indicating that O. nubilalis and O. furnacalis share similar patterns of susceptibility to Cry toxins.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Mariposas/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Hemolisinas/química , Controle de Insetos , Proteínas de Insetos/química , Proteínas de Membrana/química , Microvilosidades
17.
Insect Sci ; 30(2): 398-410, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35670378

RESUMO

Helicoverpa zea (Boddie) is a destructive agricultural pest species that is targeted by both Bacillus thuringiensis (Bt) maize and cotton in the United States. Cry1A.105 and Cry2Ab2 are two Bt proteins expressed in a widely planted maize event MON 89034. In this study, two tests (Test-I and Test-II) were conducted to evaluate the relative fitness of Bt-susceptible and -resistant H. zea on non-Bt diet (Test-I and Test-II) and a diet containing a mix of Cry1A.105 and Cry2Ab2 at a low concentration (Test-II only). Insect populations evaluated in Test-I were two Bt-susceptible strains and three Bt-resistant strains (a single-protein Cry1A.105-, a single-protein Cry2Ab2-, and a dual-protein Cry1A.105/Cry2Ab2-resistant strains). Test-II analyzed the same two susceptible strains, three backcrossed-and-reselected Cry1A.105/Cry2Ab2-single-/dual-protein-resistant strains, and three F1 heterozygous strains. Measurements of life table parameters showed that neither the single- nor dual-protein Cry1A.105/Cry2Ab2 resistance in H. zea was associated with fitness costs under the test conditions. The single Cry protein resistances at a concentration of a mix of Cry1A.105 and Cry2Ab2 that resulted in a zero net reproductive rate for the two susceptible strains were functionally incomplete recessive or codominant, and the dual-protein resistance was completely dominant. The lack of fitness costs could be a factor contributing to the rapid revolution of resistance to the Cry proteins in this species. Data generated from this study should aid our understanding of Cry protein resistance evolution and help in refining IRM programs for H. zea.


Assuntos
Bacillus thuringiensis , Mariposas , Estados Unidos , Animais , Bacillus thuringiensis/genética , Zea mays/genética , Larva/metabolismo , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Toxinas de Bacillus thuringiensis , Plantas Geneticamente Modificadas , Proteínas Hemolisinas/genética , Mariposas/metabolismo , Dieta , Resistência a Inseticidas/genética
18.
Toxins (Basel) ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37505743

RESUMO

The wide occurrence of resistance to Cry1A and Cry2A insecticidal toxins from Bacillus thuringiensis (Bt) in the corn earworm/bollworm Helicoverpa zea (Boddie) leaves the Vip3A toxin produced during the vegetative stage of Bt as the only fully active toxin expressed in transgenic crops to control H. zea in the U.S.A. During 2021, the first unexpected survival of H. zea and injury (UXI) on a maize hybrid expressing Cry1A.105, Cry2Ab2, and Vip3Aa in Louisiana, U.S.A. were observed in two sentinel plots used for resistance monitoring. A follow-up intensive investigation was conducted with two H. zea populations established from larvae collected from the two UXI plots. The main goal of this study was to reveal if the unexpected damage was due to resistance development in the insect to the Bt toxins expressed in the maize hybrid. Diet-overlay bioassays showed that the two populations were highly resistant to Cry1A.105, moderately resistant to Cry2Ab2, but still highly susceptible to Vip3Aa when compared to a reference susceptible strain. In 10 d assays with detached ears, the larvae of the two UXI populations exhibited survival on ears expressing only Cry toxins but presented near 100% mortality on maize hybrids containing both cry and vip3A transgenes. Multiple field trials over three years demonstrated that natural H. zea populations in Louisiana were highly resistant to maize expressing only Cry toxins but remained susceptible to all tested hybrids containing cry and vip3A genes. Altogether, the results of this study suggest that the observed UXIs in Louisiana were associated with a resistance to Cry toxins but were not due to a resistance to Vip3A. The possible causes of the UXIs are discussed. The results generated and procedures adopted in this study help in determining thresholds for defining UXIs, assessing resistance risks, and documenting field resistance.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Zea mays/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/toxicidade , Mariposas/genética , Endotoxinas/genética , Larva , Animais Geneticamente Modificados , Bacillus thuringiensis/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética
19.
Insects ; 14(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37504584

RESUMO

Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.

20.
Transgenic Res ; 21(5): 1023-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22252123

RESUMO

Risk assessments of ecological effects of transgenic rice expressing lepidoptera-Cry proteins from Bacillus thuringiensis (Bt) on non-target arthropods have primarily focused on rice plants during cropping season, whereas few studies have investigated the effects in postharvest periods. Harvested rice fallow fields provide a critical over-wintering habitat for arthropods in the Chinese rice ecosystems, particularly in the southern region of the country. During 2006-08, two independent field trials were conducted in Chongqing, China to investigate the effects of transgenic Cry1Ab rice residues on non-target arthropod communities. In each trial, pitfall traps were used to sample arthropods in field plots planted with one non-Bt variety and two Bt rice lines expressing the Cry1Ab protein. Aboveground arthropods in the trial plots during the postharvest season were abundant, while community densities varied significantly between the two trials. A total of 52,386 individual insects and spiders, representing 93 families, was captured in the two trials. Predominant arthropods sampled were detritivores, which accounted for 91.9% of the total captures. Other arthropods sampled included predators (4.2%), herbivores (3.2%), and parasitoids (0.7%). In general, there were no significant differences among non-Bt and Bt rice plots in all arthropod community-specific parameters for both trials, suggesting no adverse impact of the Bt rice plant residues on the aboveground non-target arthropod communities during the postharvest season. The results of this study provide additional evidence that Bt rice is safe to non-target arthropod communities in the Chinese rice ecosystems.


Assuntos
Artrópodes/efeitos dos fármacos , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Animais , Artrópodes/crescimento & desenvolvimento , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , Ecossistema , Endotoxinas/genética , Endotoxinas/metabolismo , Monitoramento Ambiental/métodos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Oryza/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA