Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Health Serv Res ; 23(1): 995, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715162

RESUMO

BACKGROUND: Primary health care (PHC) institutions are key to realizing the main functions of the health care system. Since the new health care reform in 2009, the Chinese government has invested heavily in PHC institutions and launched favorable initiatives to improve the efficiency of such institutions. This study is designed to gauge the efficiency of PHC institutions by using 2012-2020 panel data covering 31 provinces in China. METHODS: This study applied an improved three-stage data envelopment analysis (DEA) model to evaluate the efficiency of PHC institutions in China. Unlike the traditional three-stage DEA model, the input-oriented global super-efficiency slack-based measurement (SBM) DEA model is used to calculate the efficiency in the first and third stages of the improved three-stage DEA model, which not only allows the effects of environmental factors and random noise to be taken into account but also deal with the problem of slack, super-efficiency and the comparability of interperiod efficiency values throughout the efficiency measurement. RESULTS: The results show that the efficiency of PHC institutions has been overestimated due to the impact of external environmental factors and random noise. From 2012 to 2020, the efficiency of PHC institutions displayed a downward trend. Moreover, there are significant differences in the efficiency of PHC institutions between regions, with the lowest efficiency being found in the northeast region. The efficiency of PHC institutions is significantly affected by residents' annual average income, per capita GDP, population density, the percentage of the population aged 0-14, the percentage of the population aged 65 and older, the number of people with a college education and above per 100,000 residents, and the proportion of the urban population. CONCLUSIONS: Substantial investment in PHC institutions has not led to the expected efficiency gains. Therefore, more effective measures should be taken to improve the efficiency of PHC institutions in China based on local conditions. This study provides a new analytical approach to calculating the efficiency of PHC institutions, and this approach can be applied to efficiency evaluation either in other fields or in other countries.


Assuntos
Povo Asiático , Governo , Humanos , China , Reforma dos Serviços de Saúde , Atenção Primária à Saúde
2.
Pestic Biochem Physiol ; 195: 105576, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666602

RESUMO

Herbicide resistance is rapidly emerging in Cyperus difformis in rice fields across China. The response of a C. difformis population GX-35 was tested against five acetolactate synthase (ALS)-inhibiting herbicides, auxin herbicide MCPA and photosynthesis II (PSII)-inhibitor bentazone. Population GX-35 evolved multiple resistance to ALS-inhibiting herbicides (penoxsulam, bispyribac­sodium, pyrazosulfuron-ethyl, halosulfuron-methly and imazapic) and auxin herbicide MCPA, with resistance levels of 140-, 1253-, 578-, 18-, 13-, and 21-fold, respectively, compared to the susceptible population. In this population, ALS gene expression was similar to that of the susceptible population. However, an Asp376Glu mutation in ALS gene was observed, leading to reduced inhibition of in-vitro ALS activities by five ALS-inhibiting herbicides. Furthermore, CYP71D8, CYP77A3, CYP78A5 and three ABC transporter genes (cluster-14412.23067, cluster-14412.25321, and cluster-14412.24716) over-expressed in absence of penoxsulam. On the other hand, an UGT73C1 and an ABC transporter (cluster-14412.25038) were induced by penoxsulam. Additionally, both over-expression and induction were observed for CYP74, CYP71A1, UGT88A1 and an ABC transporter (cluster-14412.21723). The GX-35 population has indeed evolved multiple herbicide resistance in China. Therefore, a diverse range of weed control tactics should be implemented in rice field.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Acetolactato Sintase , Cyperus , Herbicidas , Oryza , Oryza/genética , Resistência a Herbicidas/genética , China , Transportadores de Cassetes de Ligação de ATP , Acetolactato Sintase/genética , Herbicidas/farmacologia , Ácidos Indolacéticos
3.
Mol Cancer ; 19(1): 73, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264877

RESUMO

BACKGROUND: Increasing studies have shown that circRNA is closely related to the carcinogenesis and development of many cancers. However, biological functions and the underlying molecular mechanism of circRNAs in triple-negative breast cancer (TNBC) remain largely unclear so far. METHODS: Here, we investigated the expression pattern of circRNAs in four pairs of TNBC tissues and paracancerous normal tissues using RNA-sequencing. The expression and prognostic significance of circSEPT9 were evaluated with qRT-PCR and in situ hybridization in two TNBC cohorts. The survival curves were drawn by the Kaplan-Meier method, and statistical significance was estimated with the log-rank test. A series of in vitro and in vivo functional experiments were executed to investigate the role of circSEPT9 in the carcinogenesis and development of TNBC. Mechanistically, we explored the potential regulatory effects of E2F1 and EIF4A3 on biogenesis of circSEPT9 with chromatin immunoprecipitation (ChIP), luciferase reporter and RNA immunoprecipitation (RIP) assays. Furthermore, fluorescent in situ hybridization (FISH), luciferase reporter and biotin-coupled RNA pull-down assays were implemented to verify the relationship between the circSEPT9 and miR-637 in TNBC. RESULTS: Increased expression of circSEPT9 was found in TNBC tissues, which was positively correlated with advanced clinical stage and poor prognosis. Knockdown of circSEPT9 significantly suppressed the proliferation, migration and invasion of TNBC cells, induced apoptosis and autophagy in TNBC cells as well as inhibited tumor growth and metastasis in vivo. Whereas up-regulation of circSEPT9 exerted opposite effects. Further mechanism research demonstrated that circSEPT9 could regulate the expression of Leukemia Inhibitory Factor (LIF) via sponging miR-637 and activate LIF/Stat3 signaling pathway involved in progression of TNBC. More importantly, we discovered that E2F1 and EIF4A3 might promote the biogenesis of circSEPT9. CONCLUSIONS: Our data reveal that the circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer through circSEPT9/miR-637/LIF axis. Therefore, circSEPT9 could be used as a potential prognostic marker and therapeutical target for TNBC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , RNA Helicases DEAD-box/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Circular/genética , Septinas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Estudos de Casos e Controles , Proliferação de Células , RNA Helicases DEAD-box/genética , Fator de Transcrição E2F1/genética , Fator de Iniciação 4A em Eucariotos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1887-1899, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28779971

RESUMO

Accumulating evidences indicate that long noncoding RNAs (lncRNAs) might play important roles in tumorigenesis and metastasis. EMT (epithelial-to-mesenchymal transition) is considered as a critical step in invasion and metastasis of various tumors including bladder cancer (BC). Recent researches have showed that lncRNA H19 is implicated in metastasis through regulating EMT and the reverse MET (mesenchymal-to-epithelial transition). However, underlying mechanisms remain largely unknown. Here, we screened lncRNA and mRNA expression profiles of BC with microarray assay. We found that H19 and DNMT3B displayed a higher co-expression in BC tissues and cells. Functionally, we demonstrated that H19 could increase proliferation, invasion and migration, regulate EMT as well as rearrange cytoskeleton of BC cells in vitro. Moreover, ectopic expression of H19 promoted tumorigenesis, angiogenesis and pulmonary metastasis in vivo, whereas knockdown of H19 has a contrary role in vivo and in vitro. Mechanistically, we proved that H19 could directly bind to miR-29b-3p (miR-29b) and derepress the expression of target DNMT3B. H19 and miR-29b-3p showed a co-localization. More importantly, up-regulating H19 antagonized miR-29b-3p-mediated proliferation, migration and EMT suppression in BC cells. Furthermore, H19 knockdown partially reversed the function of miR-29b-3p inhibitor on DNMT3B and facilitated miR-29b-3p-induced MET. Taken together, we demonstrated for the first time that H19 might function as ceRNA (competing endogenous RNA) for miR-29b-3p and relieve the suppression for DNMT3B, which led to EMT and metastasis of BC. Our findings highlight a novel mechanism of H19 in progression of BC and provide H19/miR-29b-3p/DNMT3B axis as a promising therapeutic target for BC.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica , RNA/genética , Neoplasias da Bexiga Urinária/patologia , DNA Metiltransferase 3B
6.
Int J Mol Sci ; 18(1)2016 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28042869

RESUMO

miRNAs have emerged as promising markers for tumors. However, the underlying mechanism of specific miRNAs in bladder cancer (BC) remains largely unknown. Here, a comprehensive miRNA/mRNA expression profile was executed by microarray assay for four pairs of bladder carcinoma and para-carcinoma tissues from patients with grade 2 (G2) T2. A total of 99 miRNAs and 4416 mRNAs were discovered to be significantly differentially expressed in BC tissues compared with controls. Five microRNAs and two mRNAs were validated by qRT-PCR in 30 pairs of samples, including G1-G3/T1-T4. Subsequently, we constructed a network with the five miRNAs-target mRNAs; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were utilized to recognize the functions and associated pathways. Moreover, we further found that miR-130b-3p was significantly up-regulated and negatively correlated with phosphatase and tensin homolog (PTEN) expression in bladder cancer tissues. Next, we demonstrated that miR-130b-3p might target PTEN through bioinformatics and dual-luciferase reporter assay. Finally, we showed that miR-130b-3p could down-regulate PTEN expression, which promoted proliferation, migration, invasion and rearranged cytoskeleton through the activation of the PI3K and integrin ß1 signaling pathway in bladder cancer cells. Inversely, miR-130b-3p inhibitors induced apoptosis. Taken together, this research investigated, for the first time, miR-130b-3p by an incorporated analysis of microRNA/mRNA expressions of a genome-wide screen in BC. Our findings suggest that the miR-130b-3p/PTEN/integrin ß1 axis could play a critical role in the progression and development of BC and that miR-130b-3p might be a valuable clinical marker and therapeutical target for BC patients.


Assuntos
Estudo de Associação Genômica Ampla/métodos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , PTEN Fosfo-Hidrolase/genética , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Integrina beta1/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais
7.
Front Immunol ; 15: 1338680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415245

RESUMO

T cell senescence is an indication of T cell dysfunction. The ability of senescent T cells to respond to cognate antigens is reduced and they are in the late stage of differentiation and proliferation; therefore, they cannot recognize and eliminate tumor cells in a timely and effective manner, leading to the formation of the suppressive tumor microenvironment. Establishing methods to reverse T cell senescence is particularly important for immunotherapy. Aging exacerbates profound changes in the immune system, leading to increased susceptibility to chronic, infectious, and autoimmune diseases. Patients with malignant lung tumors have impaired immune function with a high risk of recurrence, metastasis, and mortality. Immunotherapy based on PD-1, PD-L1, CTLA-4, and other immune checkpoints is promising for treating lung malignancies. However, T cell senescence can lead to low efficacy or unsuccessful treatment results in some immunotherapies. Efficiently blocking and reversing T cell senescence is a key goal of the enhancement of tumor immunotherapy. This study discusses the characteristics, mechanism, and expression of T cell senescence in malignant lung tumors and the treatment strategies.


Assuntos
Neoplasias Pulmonares , Humanos , Senescência de Células T , Linfócitos T , Imunoterapia/métodos , Envelhecimento , Microambiente Tumoral
8.
Br J Pharmacol ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940117

RESUMO

Angiogenesis is the process by which new blood vessels form and is required for tumour growth and metastasis. It helps in supplying oxygen and nutrients to tumour cells and plays a crucial role in the local progression and distant metastasis of, and development of treatment resistance in, breast cancer. Tumour angiogenesis is currently regarded as a critical therapeutic target; however, anti-angiogenic therapy for breast cancer fails to produce satisfactory results, owing to issues such as inconsistent efficacy and significant adverse reactions. As a result, new anti-angiogenic drugs are urgently needed. Flavonoids, a class of natural compounds found in many foods, are inexpensive, widely available, and exhibit a broad range of biological activities, low toxicity, and favourable safety profiles. Several studies find that various flavonoids inhibit angiogenesis in breast cancer, indicating great therapeutic potential. In this review, we summarize the role of angiogenesis in breast cancer and the potential of natural flavonoids as anti-angiogenic agents for breast cancer treatment. We discuss the value and significance of nanotechnology for improving flavonoid absorption and utilization and anti-angiogenic effects, as well as the challenges of using natural flavonoids as drugs.

9.
Pest Manag Sci ; 79(1): 163-172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36111449

RESUMO

BACKGROUND: Echinochloa crus-galli var. zelayensis is a troublesome weed in rice fields and can be controlled by using quinclorac. However, over-reliance on quinclorac has resulted in resistant (R) barnyardgrass, which differs significantly in its ability to transport quinclorac compared to susceptible (S) barnyardgrass. This study aimed to investigate the underlying mechanisms for this different translocation between R and S barnyardgrass. RESULTS: Larger amount of quinclorac was transferred from shoots to roots in R compared to S barnyardgrass. After 1 day of quinclorac [300 g active ingredient (a.i.) ha-1 ] foliar treatment, its content in shoots of R was 81.92% of that in S barnyardgrass; correspondingly, in roots of R was 1.17 fold of that in S barnyardgrass. RNA-sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression levels of PIPs belonging to aquaporins (AQPs) in R were higher than in S barnyardgrass, with or without quinclorac treatment. With co-application of quinclorac and AQPs inhibitors [mercury(II) chloride (HgCl2 )] treatment, even though the expression levels of PIPs and the transport rates of quinclorac were both suppressed in R and S barnyardgrass, this process was less pronounced in R than in S barnyardgrass. CONCLUSION: This report provides clear evidence that higher PIPs expression results in rapid quinclorac translocation from shoots to roots and reduces the quinclorac accumulation in the shoot meristems in R barnyardgrass, thus reducing the control efficacy of quinclorac. © 2022 Society of Chemical Industry.


Assuntos
Echinochloa , Echinochloa/genética
10.
J Hazard Mater ; 399: 123040, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526443

RESUMO

Halosulfuron methyl (HM) is a new, highly active sulfonylurea herbicide that has been widely used for weed control in agricultural production. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different concentrations of HM on bacterial communities in sugarcane rhizospheric soil by using 16S rRNA gene high-throughput sequencing. The half-life of HM for 130 mg/kg, 600 mg/kg, and 1300 mg/kg spraying concentrations were 6.64, 9.19, and 9.87 d, respectively. HM application did not alter the alpha or beta diversity of the soil bacterial community, whereas some microbial populations and the main microbial functional groups were significantly altered by HM exposure. The phylum Cyanobacteria and genus unclassified Chloroflexi group KD4-96 were found to be positively correlated with HM concentration in soils, indicating that they are highly involved in the biodegradation of HM in soils. Relationship analysis between soil properties and microbial communities showed that total nitrogen and total phosphorus concentration were two key factors that significantly influenced microbial community structure. To our best knowledge, this is the first microbial ecotoxicological assessment of HM in agricultural soil.


Assuntos
Rizosfera , Saccharum , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Compostos de Sulfonilureia
13.
Cancer Lett ; 403: 305-317, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687357

RESUMO

Accumulating evidences indicate that circular RNAs (circRNAs) play a vital role in modulating gene expression. However, the mechanisms underlying circRNAs remain largely elusive. Here, we screened circRNA and mRNA expression profiles of bladder carcinoma (BC) using microarray analysis. We found that circRNA-MYLK and VEGFA were significantly up-regulated and co-expressed in BC. Importantly, circRNA-MYLK levels were related to the progression of stage and grade of BC. Mechanistically, we demonstrated that circRNA-MYLK could directly bind to miR-29a and relieve suppression for target VEGFA, which activated VEGFA/VEGFR2 signaling pathway. Functionally, we found that ectopically expressing circRNA-MYLK accelerated cell proliferation, migration, tube formation of HUVEC and rearranged cytoskeleton. Moreover, up-regulating circRNA-MYLK promoted epithelial-mesenchymal transition (EMT). Whereas circRNA-MYLK knockdown decreased cell proliferation, motility, and induced apoptosis. Finally, up-regulating circRNA-MYLK promoted the growth, angiogenesis and metastasis of BC xenografts. Taken together, this study demonstrated for the first time that circRNA-MYLK might function as competing endogenous RNA (ceRNA) for miR-29a, which could contribute to EMT and the development of BC through activating VEGFA/VEGFR2 and downstream Ras/ERK signaling pathway. Our data suggest that circRNA-MYLK would be a promising target for BC diagnosis and therapy.


Assuntos
RNA Neoplásico/metabolismo , RNA/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Gradação de Tumores , Invasividade Neoplásica , Neovascularização Patológica , Neovascularização Fisiológica , RNA/genética , RNA Circular , RNA Neoplásico/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Neoplasias da Bexiga Urinária/irrigação sanguínea , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas ras/metabolismo
14.
Oncotarget ; 7(30): 47186-47200, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27363013

RESUMO

Accumulating evidences indicate that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) play important roles in tumorigenesis. However, the mechanisms remain largely unknown. To explore lncRNAs and circRNAs expression profiling and their biological functions in bladder cancer, we surveyed the lncRNA/circRNA and mRNA expression profiles of bladder cancer and para-cancer tissues using microarray for four patients. Thousands of significantly changed lncRNAs and mRNAs as well as hundreds of circRNAs were identified. Five dysregulated lncRNAs and four mRNAs were confirmed by quantitative real-time PCR in 30 pairs of samples. GO and KEGG pathway enrichment analyses were executed to determine the principal functions of the significantly deregulated genes. Further more, we constructed correlated expression networks including coding-noncoding co-expression (CNC), competing endogenous RNAs (ceRNA), cis regulation, lncRNAs-transcription factor (TF)-mRNA with bioinformatics methods. Co-expression analysis showed lncRNA APLP2 expression is correlated with apoptosis-related genes, including PTEN and TP53INP1. CeRNA network inferred that lncRNA H19 and circRNA MYLK could bind competitively with miRNA-29a-3p increasing target gene DNMT3B, VEGFA and ITGB1 expressions. Moreover, the nearby genes pattern displayed that overexpressing ADAM2 and C8orf4 are cis-regulated by lncRNA RP11-359E19.2, involving in progression of bladder cancer. In addition, lncRNAs-TF-mRNA diagram indicated that lncRNA BC041488 could trans-regulate CDK1 mRNA expression through SRF transcription factor. Taken together, these results suggested lncRNAs and circRNAs could implicate in the pathogenesis and development of bladder cancer. Our findings provide a novel perspective on lncRNAs and circRNAs and lay the foundation for future research of potential roles of lncRNAs and circRNAs in bladder carcinoma.


Assuntos
RNA Longo não Codificante/biossíntese , RNA/biossíntese , Neoplasias da Bexiga Urinária/genética , Diferenciação Celular , Progressão da Doença , Humanos , Análise em Microsséries , RNA/genética , RNA Circular , RNA Longo não Codificante/genética , Neoplasias da Bexiga Urinária/metabolismo
15.
J Mol Histol ; 46(2): 157-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25564356

RESUMO

Angiogenin (ANG) is a multifunctional secreted protein that belongs to the pancreatic ribonuclease A super family, which has been conceived to play a more important role in cell survival, growth and proliferation than the mediation of angiogenesis. Accumulating evidences suggest that the expression and activity of ANG increased significantly in a variety of human cancers. Recent studies showed that ANG activates cell signaling pathway through the putative receptor on endothelial cells. However, the underlying mechanisms remain largely unknown. AKT/mTOR signaling pathway participates in cell growth, cell-cycle progression and cell apoptosis. The purpose of our study was to determine whether ANG implicated in growth and metastasis of bladder cancer cells through regulating AKT/mTOR signaling pathway. In this study, we constructed ANG siRNA plasmids that transfected into human bladder cancer T24 cells. We demonstrated that knockdown of ANG could inhibit cell proliferation, regulate cell cycle and induce apoptosis. We also found that down-regulation of ANG remarkably reduced the phosphorylation of signaling targets AKT, GSK-3ß and mTOR. Furthermore, down-regulation of ANG increased expression of ribonuclease inhibitor, which is a cytoplasmic acidic protein with many functions. Finally, ANG siRNA led to the suppression for tumorigenesis and metastasis in vivo. Taken together, these findings highlight for the first time that ANG could play a pivotal role in the development of bladder cancer through regulating AKT/mTOR signaling pathway. The targeting of ANG and associated factors could provide a novel strategy to inhibit human bladder cancer.


Assuntos
Apoptose , Neoplasias Pulmonares/enzimologia , Ribonuclease Pancreático/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Forma Celular , Regulação para Baixo , Humanos , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonuclease Pancreático/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/patologia
16.
Cell Signal ; 26(12): 2782-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193113

RESUMO

Angiogenin (ANG), a member of RNase A superfamily, is the only angiogenic factor that possesses ribonucleolytic activity. Recent studies showed that the expression of ANG was elevated in various types of cancers. Accumulating evidence indicates that ANG plays an essential role in cancer progression by stimulating both cancer cell proliferation and tumor angiogenesis. Human ribonuclease inhibitor (RI), a cytoplasmic protein, is constructed almost entirely of leucine rich repeats (LRRs), which are present in a large family of proteins that are distinguished by their display of vast surface areas to foster protein-protein interactions. RI might be involved in unknown biological effects except inhibiting RNase A activity. The experiment demonstrated that RI also could suppress activity of angiogenin (ANG) through closely combining with it in vitro. PI3K/AKT/mTOR signaling pathway exerts a key role in cell growth, survival, proliferation, apoptosis and angiogenesis. We recently reported that up-regulating RI inhibited the growth and induced apoptosis of murine melanoma cells through repression of angiogenin and PI3K/AKT signaling pathway. However, ANG receptors have not yet been identified to date, its related signal transduction pathways are not fully clear and underlying interacting mechanisms between RI and ANG remain largely unknown. Therefore, we hypothesize that RI might combine with intracellular ANG to block its nuclear translocation and regulate PI3K/AKT/mTOR signaling pathway to inhibit biological functions of ANG. Here, we reported for the first time that ANG could interact with RI endogenously and exogenously by using co-immunoprecipitation (Co-IP) and GST pull-down. Furthermore, we observed the colocalization of ANG and RI in cells with immunofluorescence staining under laser confocal microscope. Moreover, through fluorescence resonance energy transfer (FRET) assay, we further confirmed that these two proteins have a physical interaction in living cells. Subsequently, we demonstrated that up-regulating ANG including ANG His37Ala mutant obviously decreased RI expression and activated phosphorylation of key downstream target molecules of PI3K/AKT/mTOR signaling pathway. Finally, up-regulating ANG led to the promotion of tumor angiogenesis, tumorigenesis and metastasis in vivo. Taken together, our data provided a novel mechanism of ANG in regulating PI3K/AKT/mTOR signaling pathway via RI, which suggested a new therapeutic target for cancer therapy.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Hormônios Placentários/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonuclease Pancreático/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transferência Ressonante de Energia de Fluorescência , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Mutantes/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Transfecção , Regulação para Cima , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA