Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(18): 9991-10002, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312805

RESUMO

The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological evidence demonstrating that cannabinoids can also alter the brain's initial molecular and epigenetic response to cocaine. Here, we utilized a multiomics approach (epigenomics, transcriptomics, proteomics, and phosphoproteomics) to characterize how the rat brain responds to its first encounter with cocaine, with or without preexposure to the synthetic cannabinoid WIN 55,212-2 (WIN). We find that in adolescent (but not in adult) rats, preexposure to WIN results in cross-sensitization to cocaine, which correlates with histone hyperacetylation and decreased levels of HDAC6 in the prefrontal cortex (PFC). In the PFC, we also find that WIN preexposure blunts the typical mRNA response to cocaine and instead results in alternative splicing and chromatin accessibility events, involving genes such as Npas2 Moreover, preexposure to WIN enhances the effects of cocaine on protein phosphorylation, including ERK/MAPK-targets like gephyrin, and modulates the synaptic AMPAR/GluR composition both in the PFC and the nucleus accumbens (NAcc). PFC-NAcc gene network topological analyses, following cocaine exposure, reveal distinct top nodes in the WIN preexposed group, which include PACAP/ADCYAP1. These preclinical data demonstrate that adolescent cannabinoid exposure reprograms the initial behavioral, molecular, and epigenetic response to cocaine.


Assuntos
Comportamento Aditivo/genética , Comportamento Animal/efeitos dos fármacos , Canabinoides/efeitos adversos , Cocaína/efeitos adversos , Adolescente , Animais , Comportamento Aditivo/induzido quimicamente , Comportamento Aditivo/patologia , Benzoxazinas/efeitos adversos , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cocaína/farmacologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/genética , Humanos , Proteínas de Membrana/farmacologia , Morfolinas/efeitos adversos , Morfolinas/farmacologia , Naftalenos/efeitos adversos , Naftalenos/farmacologia , Fosfoproteínas/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Córtex Pré-Frontal/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Ratos , Transcriptoma/efeitos dos fármacos
3.
Nat Methods ; 14(8): 819-825, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28650476

RESUMO

Broad-scale protein-protein interaction mapping is a major challenge given the cost, time, and sensitivity constraints of existing technologies. Here, we present a massively multiplexed yeast two-hybrid method, CrY2H-seq, which uses a Cre recombinase interaction reporter to intracellularly fuse the coding sequences of two interacting proteins and next-generation DNA sequencing to identify these interactions en masse. We applied CrY2H-seq to investigate sparsely annotated Arabidopsis thaliana transcription factors interactions. By performing ten independent screens testing a total of 36 million binary interaction combinations, and uncovering a network of 8,577 interactions among 1,453 transcription factors, we demonstrate CrY2H-seq's improved screening capacity, efficiency, and sensitivity over those of existing technologies. The deep-coverage network resource we call AtTFIN-1 recapitulates one-third of previously reported interactions derived from diverse methods, expands the number of known plant transcription factor interactions by three-fold, and reveals previously unknown family-specific interaction module associations with plant reproductive development, root architecture, and circadian coordination.


Assuntos
Arabidopsis/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Arabidopsis/genética , Proteoma/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética
4.
Wiley Interdiscip Rev Syst Biol Med ; 10(3): e1411, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29194997

RESUMO

5-Methylcytosine, a chemical modification of DNA, is a covalent modification found in the genomes of both plants and animals. Epigenetic inheritance of phenotypes mediated by DNA methylation is well established in plants. Most of the known mechanisms of establishing, maintaining and modifying DNA methylation have been worked out in the reference plant Arabidopsis thaliana. Major functions of DNA methylation in plants include regulation of gene expression and silencing of transposable elements (TEs) and repetitive sequences, both of which have parallels in mammalian biology, involve interaction with the transcriptional machinery, and may have profound effects on the regulatory networks in the cell. Methylome and transcriptome dynamics have been investigated in development and environmental responses in Arabidopsis and agriculturally and ecologically important plants, revealing the interdependent relationship among genomic context, methylation patterns, and expression of TE and protein coding genes. Analyses of methylome variation among plant natural populations and species have begun to quantify the extent of genetic control of methylome variation vs. true epimutation, and model the evolutionary forces driving methylome evolution in both short and long time scales. The ability of DNA methylation to positively or negatively modulate binding affinity of transcription factors (TFs) provides a natural link from genome sequence and methylation changes to transcription. Technologies that allow systematic determination of methylation sensitivities of TFs, in native genomic and methylation context without confounding factors such as histone modifications, will provide baseline datasets for building cell-type- and individual-specific regulatory networks that underlie the establishment and inheritance of complex traits. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Biological Mechanisms > Regulatory Biology.


Assuntos
Arabidopsis/metabolismo , Metilação de DNA/fisiologia , DNA de Plantas/metabolismo , Epigenômica , Regulação Viral da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Arabidopsis/genética , DNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA