Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Asian Spine J ; 18(1): 110-117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38379150

RESUMO

STUDY DESIGN: Retrospective clinical trial. PURPOSE: To establish a morphological classification of the cervical spinal canal using its parameters. OVERVIEW OF LITERATURE: Cervical spine computed tomography (CT) data of 200 healthy volunteers in 2 years were analyzed. The morphology of the spinal cord was also analyzed. METHODS: The median sagittal diameter and transverse diameter of the spinal canal from C2 to C7 were measured on CT images. The ratio of the median sagittal diameter to the transverse diameter was calculated. Accordingly, the spinal canal shape of each segment was classified into four, and the specific criteria of lunar phase classification were determined through linear discriminant analysis based on the ratio of the median sagittal diameter to the transverse diameter. The inter-rater reliability of the classification was explored using Kappa coefficients. Finally, the morphology of the different segments of the cervical spinal canal in healthy volunteers was revised and compared. RESULTS: According to the ratio of the median sagittal diameter and the transverse diameter of the cervical spinal canal, the lunar phase classification of the cervical bony spinal canal was determined as follows: full-moon >0.65, 0.55< convex-moon ≤0.65, 0.46≤ quarter-moon ≤0.55, and residual-moon <0.46. The Kappa values of C2-C7 were 0.851, 0.958, 0.823, 0.927, 0.793, and 0.946, and the Kappa value of all C2-C7 segments was 0.854 that mainly presented two forms of full-moon (76.5%) and convex-moon (23.0%). A quarter-moon spinal canal was mainly distributed in C3, C4, C5, and C6; a residual-moon spinal canal was mainly distributed in C4 and C5; and the morphological distribution of C4 and C5 were similar (p>0.05). The frequency of the spinal canal of the residual-moon type was the highest, and the full-moon (6.5%) and residual-moon (7.5%) types of C7 were rare. CONCLUSIONS: The morphological classification of the cervical spinal canal was established to present anatomical variations. The classification showed good inter-rater reliability.

2.
ACS Appl Mater Interfaces ; 16(15): 19298-19308, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568137

RESUMO

Flexible piezoresistive pressure sensors have received great popularity in flexible electronics due to their simple structure and promising applications in health monitoring and artificial intelligence. However, the contradiction between sensitivity and detection range limits the application of the sensors in the medium-pressure regime. Here, a flexible piezoresistive pressure sensor is fabricated by combining a hierarchical spinous microstructure sensitive layer and a periodic microsphere array spacer. The sensor achieves high sensitivity (39.1 kPa-1) and outstanding linearity (0.99, R2 coefficient) in a medium-pressure regime, as well as a wide range of detection (100 Pa-160.0 kPa), high detection precision (<0.63‰ full scale), and excellent durability (>5000 cycles). The mechanism of the microsphere array spacer in improving sensitivity and detection range was revealed through finite element analysis. Furthermore, the sensors have been utilized to detect muscle and joint movements, spatial pressure distributions, and throat movements during pronouncing words. By means of a full-connect artificial neural network for machine learning, the sensor's output of different pronounced words can be precisely distinguished and classified with an overall accuracy of 96.0%. Overall, the high-performance flexible pressure sensor based on a microsphere array spacer has great potential in health monitoring, human-machine interface, and artificial intelligence of medium-pressure regime.

3.
Nanomicro Lett ; 16(1): 92, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252258

RESUMO

Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference (EMI) shielding, achieving a flexible EMI shielding film, while maintaining a high transmittance remains a significant challenge. Herein, a flexible, transparent, and conductive copper (Cu) metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique. The Cu mesh film shows an ultra-low sheet resistance (0.18 Ω â–¡-1), high transmittance (85.8%@550 nm), and ultra-high figure of merit (> 13,000). It also has satisfactory stretchability and mechanical stability, with a resistance increases of only 1.3% after 1,000 bending cycles. As a stretchable heater (ε > 30%), the saturation temperature of the film can reach over 110 °C within 60 s at 1.00 V applied voltage. Moreover, the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5 µm. As a demonstration, it is used as a transparent window for shielding the wireless communication electromagnetic waves. Therefore, the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.

4.
Polymers (Basel) ; 16(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337329

RESUMO

Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. To maximize these properties, it is crucial to analyze the molecular structure and explore methods like formulation optimization and the incorporation of reinforcing materials or fibers. Current research efforts in polyurea applications for protective purposes primarily concentrate on construction, infrastructure, military, transportation and industrial products and facilities. Future research directions should encompass deliberate formulation design and modification, systematic exploration of factors influencing protective performance across various applications and the integration of numerical simulations and experiments to reveal the protective mechanisms of polyurea. This paper provides an extensive literature review that specifically examines the utilization of polyurea for blast and impact protection. It encompasses discussions on material optimization, protective mechanisms and its applications in blast and impact protection.

5.
Bioinorg Chem Appl ; 2024: 8843214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204734

RESUMO

Purpose: The crystal adhesion caused by the damage of renal tubular epithelial cells (HK-2) is the key to the formation of kidney stones. However, no effective preventive drug has been found. This study aims to explore the recovery effects of four Laminaria polysaccharides (SLPs) with different sulfate (-OSO3-) contents on damaged HK-2 cells and the difference in the adhesion of damaged cells to nanometer calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) before and after recovery. Methods: Sodium oxalate (2.6 mmol/L) was used to damage HK-2 cells to establish a damaged model. SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3- contents of 0.73%, 15.1%, 22.8%, and 31.3%, respectively, were used to restore the damaged cells, and the effects of SLPs on the adhesion of COM and COD, with a size of about 100 nm before and after recovery, were measured. Results: The following results were observed after SLPs recovered the damaged HK-2 cells: increased cell viability, restored cell morphology, decreased reactive oxygen levels, increased mitochondrial membrane potential, decreased phosphatidylserine eversion ratio, increased cell migration ability, reduced expression of annexin A1, transmembrane protein, and heat shock protein 90 on the cell surface, and reduced adhesion amount of cells to COM and COD. Under the same conditions, the adhesion ability of cells to COD crystals was weaker than that to COM crystals. Conclusions: As the sulfate content in SLPs increases, the ability of SLPs to recover damaged HK-2 cells and inhibit crystal adhesion increases. SLP3 with high -OSO3- content may be a potential drug to prevent kidney stones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA