Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 168(3): 427-441.e21, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111074

RESUMO

Human apolipoprotein E (ApoE) apolipoprotein is primarily expressed in three isoforms (ApoE2, ApoE3, and ApoE4) that differ only by two residues. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), ApoE3 is neutral, and ApoE2 is protective. How ApoE isoforms influence AD pathogenesis, however, remains unclear. Using ES-cell-derived human neurons, we show that ApoE secreted by glia stimulates neuronal Aß production with an ApoE4 > ApoE3 > ApoE2 potency rank order. We demonstrate that ApoE binding to ApoE receptors activates dual leucine-zipper kinase (DLK), a MAP-kinase kinase kinase that then activates MKK7 and ERK1/2 MAP kinases. Activated ERK1/2 induces cFos phosphorylation, stimulating the transcription factor AP-1, which in turn enhances transcription of amyloid-ß precursor protein (APP) and thereby increases amyloid-ß levels. This molecular mechanism also regulates APP transcription in mice in vivo. Our data describe a novel signal transduction pathway in neurons whereby ApoE activates a non-canonical MAP kinase cascade that enhances APP transcription and amyloid-ß synthesis.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/metabolismo , Sistema de Sinalização das MAP Quinases , Doença de Alzheimer/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
2.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605226

RESUMO

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Assuntos
Células-Tronco Hematopoéticas , Metiltransferases , Metilação de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Peixe-Zebra , Animais , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metilação de RNA/genética
3.
Cell ; 148(5): 933-46, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385959

RESUMO

Control of translation is a fundamental source of regulation in gene expression. The induction of protein synthesis by brain-derived neurotrophic factor (BDNF) critically contributes to enduring modifications of synaptic function, but how BDNF selectively affects only a minority of expressed mRNAs is poorly understood. We report that BDNF rapidly elevates Dicer, increasing mature miRNA levels and inducing RNA processing bodies in neurons. BDNF also rapidly induces Lin28, causing selective loss of Lin28-regulated miRNAs and a corresponding upregulation in translation of their target mRNAs. Binding sites for Lin28-regulated miRNAs are necessary and sufficient to confer BDNF responsiveness to a transcript. Lin28 deficiency, or expression of a Lin28-resistant Let-7 precursor miRNA, inhibits BDNF translation specificity and BDNF-dependent dendrite arborization. Our data establish that specificity in BDNF-regulated translation depends upon a two-part posttranscriptional control of miRNA biogenesis that generally enhances mRNA repression in association with GW182 while selectively derepressing and increasing translation of specific mRNAs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Biossíntese de Proteínas , Animais , Autoantígenos , RNA Helicases DEAD-box/metabolismo , Hipocampo/citologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Ribonuclease III/metabolismo
4.
Nat Chem Biol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090313

RESUMO

Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.

5.
J Biol Chem ; 300(3): 105772, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382674

RESUMO

Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.


Assuntos
Fatores de Processamento de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Mutação , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Células-Tronco/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
J Biol Chem ; 300(8): 107494, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925326

RESUMO

The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect human pluripotent stem cell-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide chromatin immunoprecipitation enrichment and mechanistic studies show that p38 MAPK-mediated CCAAT enhancer binding protein delta (CEBPD) upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in mesenchymal stem cells exerts a negative regulatory effect on osteogenesis through a similar mechanism. Chromatin immunoprecipitation-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.

7.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929537

RESUMO

Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a 'grape' karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.


Assuntos
Processamento Alternativo , Peixe-Zebra , Processamento Alternativo/genética , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas , Células Progenitoras Mieloides , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
PLoS Genet ; 18(3): e1009841, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245286

RESUMO

Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish.


Assuntos
Degeneração Retiniana , Peixe-Zebra , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas do Olho/metabolismo , Mamíferos/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
BJU Int ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030920

RESUMO

OBJECTIVE: To investigate the clinical trajectories and identify risk factors linked to post-enucleation urinary incontinence (UI). PATIENTS AND METHODS: In this prospective study (April 2020 to March 2022) at a single institution, 316 consecutive patients receiving endoscopic enucleation due to benign prostatic enlargement were included. Patient information and perioperative details were collected. Follow-ups, from 1 to 6 months, assessed postoperative UI using International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form and a four-item pad questionnaire, classified per International Continence Society definitions. Logistic regression analysed predictors at 1 week, while generalised estimating equation assessed risk factors from 1 to 3 months postoperatively. RESULTS: Patients with a median prostate volume of 57 mL underwent enucleation, with 22.5% experiencing postoperative UI at 1 week, 5.6% at 3 months, decreasing to 1.9% at 6 months. Multivariable analysis identified age (>80 years), specimen weight (>70 g), en bloc with anteroposterior dissection, and anal tone (Digital Rectal Examination Scoring System score <3) as potential factors influencing UI. Subgroup analysis revealed that specimen weight was associated with both continuous and stress UI. Anal tone was related to both other types and stress UI, while overactive bladder symptoms were associated with urge UI. CONCLUSION: In summary, our study elucidates transient risk factors contributing to temporary post-enucleation UI after prostatectomy. Informed decisions and personalised interventions can effectively alleviate concerns regarding postoperative UI.

10.
Mol Ther ; 31(9): 2715-2733, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37481702

RESUMO

Neuromyelitis optica (NMO) is an autoimmune inflammatory disease of the central nervous system (CNS) characterized by transverse myelitis and optic neuritis. The pathogenic serum IgG antibody against the aquaporin-4 (AQP4) on astrocytes triggers the activation of the complement cascade, causing astrocyte injury, followed by oligodendrocyte injury, demyelination, and neuronal loss. Complement C3 is positioned as a central player that relays upstream initiation signals to activate downstream effectors, potentially stimulating and amplifying host immune and inflammatory responses. However, whether targeting the inhibition of C3 signaling could ameliorate tissue injury, locomotor defects, and visual impairments in NMO remains to be investigated. In this study, using the targeted C3 inhibitor CR2-Crry led to a significant decrease in complement deposition and demyelination in both slice cultures and focal intracerebral injection models. Moreover, the treatment downregulated the expression of inflammatory cytokines and improved motor dysfunction in a systemic NMO mouse model. Similarly, employing serotype 2/9 adeno-associated virus (AAV2/9) to induce permanent expression of CR2-Crry resulted in a reduction in visual dysfunction by attenuating NMO-like lesions. Our findings reveal the therapeutic value of inhibiting the complement C3 signaling pathway in NMO.


Assuntos
Complemento C3 , Neuromielite Óptica , Animais , Camundongos , Complemento C3/genética , Complemento C3/metabolismo , Neuromielite Óptica/patologia , Aquaporina 4/metabolismo , Transtornos da Visão/complicações , Transtornos da Visão/patologia , Astrócitos/metabolismo , Transdução de Sinais , Proteínas Recombinantes de Fusão/metabolismo
11.
Cell Mol Life Sci ; 80(10): 289, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690046

RESUMO

Major depressive disorder (MDD) is a pervasive and devastating mental disease. Broad spectrum histone deacetylase (HDAC) inhibitors are considered to have potential for the treatment of depressive phenotype in mice. However, due to its non-specific inhibition, it has extensive side effects and can not be used in clinical treatment of MDD. Therefore, finding specific HDAC subtypes that play a major role in the etiology of MDD is the key to develop corresponding specific inhibitors as antidepressants in the future. Copy number variation in HDAC9 gene is thought to be associated with the etiology of some psychiatric disorders. Herein, we found that HDAC9 was highly expressed in the hippocampus of chronic restraint stress (CRS) mouse model of depression. Upregulation of HDAC9 expression in hippocampal neurons of mice induced depression-like phenotypes, including anhedonia, helplessness, decreased dendritic spine density, and neuronal hypoexcitability. Moreover, knockdown or knockout of HDAC9 in hippocampal neurons alleviated depression-like phenotypes caused by chronic restraint stress (CRS) in WT mice. Importantly, using immunoprecipitation-mass spectrometry (IP-MS), we further found that Annexin A2 (ANXA2) was coupled to and deacetylated by HDAC9. This coupling resulted in the inhibition of ubiquitinated ANXA2 degradation and then mediates depression-like behavior. Overall, we discovered a previously unrecognized role for HDAC9 in hippocampal neurons in the pathogenesis of depression, indicating that inhibition of HDAC9 might be a promising clinical strategy for the treatment of depressive disorders.


Assuntos
Anexina A2 , Transtorno Depressivo Maior , Histona Desacetilases , Animais , Camundongos , Anexina A2/genética , Depressão/genética , Variações do Número de Cópias de DNA , Hipocampo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Regulação para Cima
12.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035170

RESUMO

Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous NRXN1 deletions, we observed the same synaptic impairment as in engineered NRXN1-deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. Nrxn1-deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1-binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Mutação , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/metabolismo , Neurotransmissores/metabolismo , Esquizofrenia/metabolismo , Estudos de Casos e Controles , Transdiferenciação Celular , Células Cultivadas , Estudos de Coortes , Células-Tronco Embrionárias/citologia , Expressão Gênica , Guanilato Quinases/metabolismo , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
13.
Nano Lett ; 23(21): 9811-9816, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37708490

RESUMO

Extreme ultraviolet (EUV) radiation with wavelengths of 10-121 nm has drawn considerable attention recently for its use in photolithography to fabricate nanoelectronic chips. This study demonstrates, for the first time, fluorescent nanodiamonds (FNDs) with nitrogen-vacancy (NV) centers as scintillators to image and characterize EUV radiations. The FNDs employed are ∼100 nm in size; they form a uniform and stable thin film on an indium-tin-oxide-coated slide by electrospray deposition. The film is nonhygroscopic and photostable and can emit bright red fluorescence from NV0 centers when excited by EUV light. An FND-based imaging device has been developed and applied for beam diagnostics of 50 nm and 13.5 nm synchrotron radiations, achieving a spatial resolution of 30 µm using a film of ∼1 µm thickness. The noise equivalent power density is 29 µW/(cm2 Hz1/2) for the 13.5 nm radiation. The method is generally applicable to imaging EUV radiation from different sources.

14.
BMC Med ; 21(1): 117, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978080

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) has been suggested to exert deleterious effects on myocardium and cardiovascular disease (CVD) consequence. We evaluated the associations of EAT thickness with adverse outcomes and its potential mediators in the community. METHODS: Participants without heart failure (HF) who had undergone cardiac magnetic resonance (CMR) to measure EAT thickness over the right ventricular free wall from the Framingham Heart Study were included. The correlation of EAT thickness with 85 circulating biomarkers and cardiometric parameters was assessed in linear regression models. The occurrence of HF, atrial fibrillation, coronary heart disease (CHD), and other adverse events was tracked since CMR was implemented. Their associations with EAT thickness and the mediators were evaluated using Cox regression and causal mediation analysis. RESULTS: Of 1554 participants, 53.0% were females. Mean age, body mass index, and EAT thickness were 63.3 years, 28.1 kg/m2, and 9.8 mm, respectively. After fully adjusting, EAT thickness positively correlated with CRP, LEP, GDF15, MMP8, MMP9, ORM1, ANGPTL3, and SERPINE1 and negatively correlated with N-terminal pro-B-type natriuretic peptide (NT-proBNP), IGFBP1, IGFBP2, AGER, CNTN1, and MCAM. Increasing EAT thickness was associated with smaller left ventricular end-diastolic dimension, thicker left ventricular wall thickness, and worse global longitudinal strain (GLS). During a median follow-up of 12.7 years, 101 incident HF occurred. Per 1-standard deviation increment of EAT thickness was associated with a higher risk of HF (adjusted hazard ratio [HR] 1.43, 95% confidence interval [CI] 1.19-1.72, P < 0.001) and the composite outcome consisting of myocardial infarction, ischemic stroke, HF, and death from CVD (adjusted HR [95% CI], 1.23 [1.07-1.40], P = 0.003). Mediation effect in the association between thicker EAT and higher risk of HF was observed with NT-proBNP (HR [95% CI], 0.95 [0.92-0.98], P = 0.011) and GLS (HR [95% CI], 1.04 [1.01-1.07], P = 0.032). CONCLUSIONS: EAT thickness was correlated with inflammation and fibrosis-related circulating biomarkers, cardiac concentric change, myocardial strain impairment, incident HF risk, and overall CVD risk. NT-proBNP and GLS might partially mediate the effect of thickened EAT on the risk of HF. EAT could refine the assessment of CVD risk and become a new therapeutic target of cardiometabolic diseases. TRIAL REGISTRATION: URL: https://clinicaltrials.gov . Identifier: NCT00005121.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/epidemiologia , Peptídeos Natriuréticos , Biomarcadores , Miocárdio , Tecido Adiposo/diagnóstico por imagem , Prognóstico , Volume Sistólico , Proteína 3 Semelhante a Angiopoietina
15.
J Org Chem ; 88(24): 17227-17236, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38019169

RESUMO

This study presents a convenient approach to the synthesis of indole- and benzofuran-based benzylic sulfones using unactivated alkynes containing aryl iodides and sodium sulfinates under visible light irradiation. The procedure involves a sequential series of dehalogenation, carbo-cyclization, and radical sulfonylation. Plausible insights into the reaction mechanism are derived from control experiments, leading to the proposal of a radical cascade reaction pathway.

16.
Thromb J ; 21(1): 123, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093370

RESUMO

BACKGROUND: Congenital antithrombin deficiency is an autosomal dominant disease that results in deep venous thrombosis and pulmonary embolism, which is mainly caused by mutations in the antithrombin gene (SERPINC1). Since SERPINC1 is highly susceptible to alterations, severe structural and functional changes that promote thrombosis may occur. Clinical presentations vary from different alterations. We report a pregnant case with novel mutation in SERPINC1 presenting transient antithrombin deficiency and multiple venous thromboembolisms. CASE PRESENTATION: We report a case of a 36-year-old pregnant patient who was diagnosed with congenital antithrombin deficiency for carrying a novel heterozygous mutation, NM_000488:exon5:c.T9 38 C:p. M313T in SERPINC1 presenting transient antithrombin deficiency and multiple venous thromboembolisms. Thrombolytic with alteplase and anticoagulant therapies with low-molecular-weight heparin and warfarin were administrated. After confirming the genetic analysis and the termination of pregnancy, rivaroxaban was administrated, and the thrombosis reduced. CONCLUSIONS: Our study enriched the mutation database of SERPINC1 gene, provided some new theoretical basis for gene diagnosis and genetic counseling of patients with transient antithrombin deficiency. While it still needs for subsequent exploration of molecular pathogenesis.

17.
BMC Pregnancy Childbirth ; 23(1): 16, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624418

RESUMO

BACKGROUND: In recent years, with the development of monitoring conditions and the application of pulmonary vascular-targeted drugs, pregnancy outcomes in women with pulmonary hypertension (PH) have improved, but the maternal mortality rate is still high. The purpose of this study was to describe the maternal-foetal outcomes in pregnant women with PH. METHODS: The clinical data of 154 pregnant women with PH who were admitted to the Third Affiliated Hospital of Guangzhou Medical University from January 2011 to December 2020 were collected and descriptively analysed. RESULTS: Among the 154 pregnant women with PH, 6 (3.9%) had idiopathic pulmonary arterial hypertension (iPAH), 41 (26.6%) had pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD-PAH), 45 (29.2%) had PAH related to other diseases (oPAH), and 62 (40.3%) had PH related to left heart disease (LHD-PH). The systolic pulmonary artery pressure (sPAP) was 36-49 mmHg in 53.2% of the patients, 50-69 mmHg in 22.1% of the patients and ≥ 70 mmHg in 24.7% of the patients. Five (3.2%) pregnant women died within 1 week after delivery; iPAH patients had the highest mortality rate (3/6, 50%). Fifty-four patients (35.1%) were admitted to the intensive care unit (ICU), and the incidence of heart failure during pregnancy was 14.9%. A total of 70.1% of the patients underwent caesarean section; 42.9% had premature infants; 28.6% had low-birth-weight (LBW) infants; 13.0% had very-low-birth-weight (VLBW) infants; 3.2% had extremely-low-birth-weight (ELBW) infants; 61% had small for gestational age (SGA) infants; and 1.9% experienced neonatal mortality. CONCLUSION: There were significant differences in the maternal-foetal outcomes in the iPAH, CHD-PAH, oPAH and LHD-PH groups. Maternal mortality was highest in the iPAH group; therefore, iPAH patients should be advised to prevent pregnancy. Standardized and multidiscipline-assisted maternal management is the key to improving maternal-foetal outcomes.


Assuntos
Hipertensão Pulmonar , Resultado da Gravidez , Recém-Nascido , Lactente , Feminino , Gravidez , Humanos , Resultado da Gravidez/epidemiologia , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/etiologia , Cesárea/efeitos adversos , Estudos Retrospectivos , Hipertensão Pulmonar Primária Familiar/complicações
18.
Nucleic Acids Res ; 49(4): 2027-2043, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33476374

RESUMO

Dysfunction of splicing factors often result in abnormal cell differentiation and apoptosis, especially in neural tissues. Mutations in pre-mRNAs processing factor 31 (PRPF31) cause autosomal dominant retinitis pigmentosa, a progressive retinal degeneration disease. The transcriptome-wide splicing events specifically regulated by PRPF31 and their biological roles in the development and maintenance of retina are still unclear. Here, we showed that the differentiation and viability of retinal progenitor cells (RPCs) are severely perturbed in prpf31 knockout zebrafish when compared with other tissues at an early embryonic stage. At the cellular level, significant mitotic arrest and DNA damage were observed. These defects could be rescued by the wild-type human PRPF31 rather than the disease-associated mutants. Further bioinformatic analysis and experimental verification uncovered that Prpf31 deletion predominantly causes the skipping of exons with a weak 5' splicing site. Moreover, genes necessary for DNA repair and mitotic progression are most enriched among the differentially spliced events, which may explain the cellular and tissular defects in prpf31 mutant retinas. This is the first time that Prpf31 is demonstrated to be essential for the survival and differentiation of RPCs during retinal neurogenesis by specifically modulating the alternative splicing of genes involved in DNA repair and mitosis.


Assuntos
Processamento Alternativo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Retina/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Apoptose , Sistemas CRISPR-Cas , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , Éxons , Técnicas de Inativação de Genes , Pontos de Checagem da Fase M do Ciclo Celular , Células-Tronco Neurais/citologia , Neurônios Retinianos/citologia , Neurônios Retinianos/metabolismo , Fuso Acromático/ultraestrutura , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
BMC Pulm Med ; 23(1): 505, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093231

RESUMO

BACKGROUND: Airway remodeling due to increased airway smooth muscle cell (ASMC) mass, likely due to enhanced proliferation, hypertrophy, and migration, has been proven to be highly correlated with decreased lung function in asthma patients. Vascular endothelial growth factor (VEGF) mediates vascular and extravascular remodeling and inflammation and has been proven to be involved in the progression of asthma. Previous studies have focused on the effects of VEGF on ASMC proliferation, but few researchers have focused on the effects of VEGF on human ASMC migration. The purpose of this study was to explore the effect of VEGF on the migration of ASMCs and its related signaling pathway mechanism to provide evidence for the treatment of airway remodeling. METHODS: We examined the effects of VEGF induction on ASMC migration and explored the mechanisms involved in ASMC migration. RESULTS: We found by wound healing and Transwell assays that VEGF promoted ASMC migration. Through the Cell Counting Kit-8 (CCK-8) experiment, we found that VEGF had no significant effect on the proliferation of ASMCs, which excluded the involvement of cell proliferation in the process of wound healing. Moreover, a cellular immunofluorescence assay showed that VEGF promoted F-actin reorganization, and Western blotting showed that VEGF improved RhoA activation and myosin phosphatase targeting subunit-1 (MYPT1) and myosin light chain (MLC) phosphorylation in ASMCs. Treatment with the ROCK inhibitor Y27632 significantly attenuated the effects of VEGF on MYPT1/MLC activation and cell migration. CONCLUSION: In conclusion, the results suggest that the promigratory function of VEGF activates the RhoA/ROCK pathway, induces F-actin reorganization, improves the migration of ASMCs, and provides a better rationale for targeting the RhoA/ROCK pathway for therapeutic approaches in airway remodeling.


Assuntos
Asma , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Actinas/metabolismo , Actinas/farmacologia , Remodelação das Vias Aéreas , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Movimento Celular , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Células Cultivadas
20.
Ecotoxicol Environ Saf ; 257: 114926, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094483

RESUMO

Iodoacetic acid (IAA) is an emerging and the most genotoxic iodinated disinfection byproduct to date. IAA can disrupt the thyroid endocrine function in vivo and in vitro, but the underlying mechanisms remain unclear. In this work, transcriptome sequencing was used to investigate the effect of IAA on the cellular pathways of human thyroid follicular epithelial cell line Nthy-ori 3-1 and determine the mechanism of IAA on the synthesis and secretion of thyroid hormone (TH) in Nthy-ori 3-1 cells. Results of transcriptome sequencing indicated that IAA affected the TH synthesis pathway in Nthy-ori 3-1 cells. IAA reduced the mRNA expression of thyroid stimulating hormone receptor, sodium iodide symporter, thyroid peroxidase, thyroglobulin, paired box 8 and thyroid transcription factor-2, inhibited the cAMP/PKA pathway and Na+-K+-ATPase, and decreased the iodine intake. The results were confirmed by our previous findings in vivo. Additionally, IAA downregulated glutathione and the mRNA expression of glutathione peroxidase 1, leading to increased reactive oxygen species production. This study is the first to elucidate the mechanisms of IAA on TH synthesis in vitro. The mechanisms are associated with down-regulating the expression of genes related to TH synthesis, inhibiting iodine uptake, and inducing oxidative stress. These findings may improve future health risk assessment of IAA on thyroid in human.


Assuntos
Água Potável , Iodo , Humanos , Glândula Tireoide , Ácido Iodoacético/toxicidade , Ácido Iodoacético/metabolismo , Água Potável/análise , Desinfecção/métodos , Hormônios Tireóideos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Iodo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA