Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(1): 328-333, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978831

RESUMO

The search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moiré patterns can act as a powerful knob to create artificial electronic structures. Here, we demonstrate that a moiré pattern between a van der Waals superconductor and a monolayer ferromagnet creates a periodic potential modulation that enables the realization of a topological superconducting state that would not be accessible in the absence of the moiré. The magnetic moiré pattern gives rise to Yu-Shiba-Rusinov minibands and periodic modulation of the Majorana edge modes that we detect using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Moiré patterns and, more broadly, periodic potential modulations are powerful tools to overcome the conventional constraints for realizing and controlling topological superconductivity.

2.
Adv Mater ; 33(23): e2006850, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938604

RESUMO

The ability to imprint a given material property to another through a proximity effect in layered 2D materials has opened the way to the creation of designer materials. Here, molecular-beam epitaxy is used for direct synthesis of a superconductor-ferromagnet heterostructure by combining superconducting niobium diselenide (NbSe2 ) with the monolayer ferromagnetic chromium tribromide (CrBr3 ). Using different characterization techniques and density-functional theory calculations, it is confirmed that the CrBr3 monolayer retains its ferromagnetic ordering with a magnetocrystalline anisotropy favoring an out-of-plane spin orientation. Low-temperature scanning tunneling microscopy measurements show a slight reduction of the superconducting gap of NbSe2 and the formation of a vortex lattice on the CrBr3 layer in experiments under an external magnetic field. The results contribute to the broader framework of exploiting proximity effects to realize novel phenomena in 2D heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA