RESUMO
The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.
Assuntos
Domínio BTB-POZ , Fatores de Transcrição , Proteínas de Xenopus , Animais , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Cristalografia por Raios X , Células HEK293 , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Xenopus laevis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/químicaRESUMO
PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.
Assuntos
ADP-Ribosilação , Histonas , Histonas/genética , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Cromatina , Dano ao DNA , Anticorpos/genética , Transdução de SinaisRESUMO
PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
Assuntos
ADP-Ribosilação , Interferons , Poli(ADP-Ribose) Polimerases , Ubiquitina-Proteína Ligases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Interferons/metabolismo , Ubiquitinação , Células HEK293 , SARS-CoV-2/metabolismo , Transdução de Sinais , COVID-19/virologia , COVID-19/metabolismo , Proteínas de NeoplasiasRESUMO
Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.
Assuntos
ADP-Ribosilação , Histonas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Histonas/metabolismo , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genéticaRESUMO
The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.
Assuntos
Proteína BRCA1 , DNA Polimerase II , Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase II/genética , Replicação do DNA/efeitos dos fármacos , Dano ao DNA , Linhagem Celular Tumoral , Recombinação Homóloga/genética , Recombinação Homóloga/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genéticaRESUMO
DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation.
Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Regulação Alostérica , Sítios de Ligação , Linhagem Celular Tumoral , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Conformação de Ácido Nucleico , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose/química , Ligação Proteica , Relação Estrutura-Atividade , Fatores de TempoRESUMO
The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.
Assuntos
DNA Glicosilases , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/química , DNA Glicosilases/metabolismo , Reparo do DNARESUMO
Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and 2 small polar bodies. This relies on the ability of the cell to break symmetry and position its spindle close to the cortex before anaphase occurs. In metaphase II-arrested mouse oocytes, the spindle is actively maintained close and parallel to the cortex, until fertilization triggers sister chromatid segregation and the rotation of the spindle. The latter must indeed reorient perpendicular to the cortex to enable cytokinesis ring closure at the base of the polar body. However, the mechanisms underlying symmetry breaking and spindle rotation have remained elusive. In this study, we show that spindle rotation results from 2 antagonistic forces. First, an inward contraction of the cytokinesis furrow dependent on RhoA signaling, and second, an outward attraction exerted on both sets of chromatids by a Ran/Cdc42-dependent polarization of the actomyosin cortex. By combining live segmentation and tracking with numerical modeling, we demonstrate that this configuration becomes unstable as the ingression progresses. This leads to spontaneous symmetry breaking, which implies that neither the rotation direction nor the set of chromatids that eventually gets discarded are biologically predetermined.
Assuntos
Segregação de Cromossomos , Meiose , Oócitos/citologia , Fuso Acromático , Actinas/metabolismo , Animais , Feminino , Camundongos , Proteína cdc42 de Ligação ao GTP , Proteína rhoA de Ligação ao GTPRESUMO
TET (ten-eleven translocation) enzymes initiate active cytosine demethylation via the oxidation of 5-methylcytosine. TET1 is composed of a C-terminal domain, which bears the catalytic activity of the enzyme, and a N-terminal region that is less well characterized except for the CXXC domain responsible for the targeting to CpG islands. While cytosine demethylation induced by TET1 promotes transcription, this protein also interacts with chromatin-regulating factors that rather silence this process, the coordination between these two opposite functions of TET1 being unclear. In the present work, we uncover a new function of the N-terminal part of the TET1 protein in the regulation of the chromatin architecture. This domain of the protein promotes the establishment of a compact chromatin architecture displaying reduced exchange rate of core histones and partial dissociation of the histone linker. This chromatin reorganization process, which does not rely on the CXXC domain, is associated with a global shutdown of transcription and an increase in heterochromatin-associated histone epigenetic marks. Based on these findings, we propose that the dense chromatin organization generated by the N-terminal domain of TET1 could contribute to restraining the transcription enhancement induced by the DNA demethylation activity of this enzyme.
Assuntos
Cromatina , Metilação de DNA , 5-Metilcitosina/metabolismo , Cromatina/genética , Citosina/metabolismo , Histonas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismoRESUMO
Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution imaging, among other new technologies developed in the last decade. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments. In this review, we describe recent imaging techniques to study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss recent findings, elucidated by these techniques, on the chromatin landscape during different cellular processes, with an emphasis on the DNA damage response.
Assuntos
Cromatina , Nucleossomos , Microscopia , Genoma , Núcleo CelularRESUMO
The addition of poly(ADP-ribose) (PAR) chains along the chromatin fiber due to PARP1 activity regulates the recruitment of multiple factors to sites of DNA damage. In this manuscript, we investigated how, besides direct binding to PAR, early chromatin unfolding events controlled by PAR signaling contribute to recruitment to DNA lesions. We observed that different DNA-binding, but not histone-binding, domains accumulate at damaged chromatin in a PAR-dependent manner, and that this recruitment correlates with their affinity for DNA. Our findings indicate that this recruitment is promoted by early PAR-dependent chromatin remodeling rather than direct interaction with PAR. Moreover, recruitment is not the consequence of reduced molecular crowding at unfolded damaged chromatin but instead originates from facilitated binding to more exposed DNA. These findings are further substantiated by the observation that PAR-dependent chromatin remodeling at DNA lesions underlies increased DNAse hypersensitivity. Finally, the relevance of this new mode of PAR-dependent recruitment to DNA lesions is demonstrated by the observation that reducing the affinity for DNA of both CHD4 and HP1α, two proteins shown to be involved in the DNA-damage response, strongly impairs their recruitment to DNA lesions.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Poli Adenosina Difosfato Ribose/fisiologia , Sítios de Ligação/genética , Células Cultivadas , Cromatina/química , Homólogo 5 da Proteína Cromobox , Humanos , Conformação de Ácido Nucleico , Poli Adenosina Difosfato Ribose/metabolismo , Ligação ProteicaRESUMO
MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repressive effect that is common to all macroH2A proteins. In the absence of DNA damage, the macroH2A linker is also sufficient for rescuing heterochromatin architecture in cells deficient for macroH2A.
Assuntos
Cromatina/genética , Epigênese Genética/genética , Histonas/química , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Cromatina/química , Cristalografia por Raios X , Dano ao DNA/genética , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genéticaRESUMO
One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.
Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Quebras de DNA , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Linhagem Celular , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Transdução de SinaisRESUMO
The most frequent DNA lesion resulting from an oxidative stress is 7,8-dihydro-8-oxoguanine (8-oxoG). 8-oxoG is a premutagenic base modification due to its capacity to pair with adenine. Thus, the repair of 8-oxoG is critical for the preservation of the genetic information. Nowadays, 8-oxoG is also considered as an oxidative stress-sensor with a putative role in transcription regulation. In mammalian cells, the modified base is excised by the 8-oxoguanine DNA glycosylase (OGG1), initiating the base excision repair (BER) pathway. OGG1 confronts the massive challenge that is finding rare occurrences of 8-oxoG among a million-fold excess of normal guanines. Here, we review the current knowledge on the search and discrimination mechanisms employed by OGG1 to find its substrate in the genome. While there is considerable data from in vitro experiments, much less is known on how OGG1 is recruited to chromatin and scans the genome within the cellular nucleus. Based on what is known of the strategies used by proteins searching for rare genomic targets, we discuss the possible scenarios allowing the efficient detection of 8-oxoG by OGG1.
Assuntos
DNA Glicosilases/metabolismo , Guanina/análogos & derivados , Animais , DNA/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Guanina/metabolismo , Guanina/fisiologia , Humanos , Estresse Oxidativo/fisiologiaRESUMO
INTRODUCTION: Current recommendations for the management of stress urinary incontinence (SUI) include conservative interventions as first-line treatments. New approaches are emerging with the arrival of health applications on smartphones. The objective of this review is to evaluate the interest of mobile and Internet applications in the treatment of SUI in women. METHOD: Interventional studies evaluating the use of mobile applications or websites in the management of women with SUI were selected from PubMed, Cinalh and PEDro databases. An analysis of symptoms, quality of life and adherence was carried out, highlighting biases. RESULTS: Eight of the 85 retrieved articles were selected. These studies report an improvement in SUI symptoms, quality of life and adherence after an intervention including new technologies (LE1). This type of intervention appears to be superior to the absence of intervention: patients report an improvement in symptoms (ICIQ-SF P<0.001 ; decrease in the number of pads P=0.023, LE1) and a greater perception of improvement (P<0.001, LE1). This type of intervention seems to be more effective than those in paper format on the decrease in the number of pads (P=0.02, LE1) and the perception of improvement (P=0.03, LE1). CONCLUSION: This innovative approach seems to reduce SUI symptoms, improve the quality of life and the functionality of pelvic floor muscles with long-term results. This type of intervention may improve adherence provided that it is associated with a treatment by a therapist.
Assuntos
Internet , Aplicativos Móveis , Incontinência Urinária por Estresse/terapia , Feminino , HumanosRESUMO
Mammalian genomes contain several billion base pairs of DNA that are packaged in chromatin fibres. At selected gene loci, cohesin complexes have been proposed to arrange these fibres into higher-order structures, but how important this function is for determining overall chromosome architecture and how the process is regulated are not well understood. Using conditional mutagenesis in the mouse, here we show that depletion of the cohesin-associated protein Wapl stably locks cohesin on DNA, leads to clustering of cohesin in axial structures, and causes chromatin condensation in interphase chromosomes. These findings reveal that the stability of cohesin-DNA interactions is an important determinant of chromatin structure, and indicate that cohesin has an architectural role in interphase chromosome territories. Furthermore, we show that regulation of cohesin-DNA interactions by Wapl is important for embryonic development, expression of genes such as c-myc (also known as Myc), and cell cycle progression. In mitosis, Wapl-mediated release of cohesin from DNA is essential for proper chromosome segregation and protects cohesin from cleavage by the protease separase, thus enabling mitotic exit in the presence of functional cohesin complexes.
Assuntos
Cromatina/química , Cromatina/metabolismo , Segregação de Cromossomos , Proteínas/metabolismo , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Endopeptidases/metabolismo , Regulação da Expressão Gênica/genética , Genes myc/genética , Interfase , Camundongos , Mitose , Prófase , Proteínas/genética , Separase , CoesinasRESUMO
Main conclusion Variations in gene expression can partially explain the difference of carotenoid accumulation in secondary phloem and xylem of fleshy carrot roots. The carrot root is well divided into two different tissues separated by vascular cambium: the secondary phloem and xylem. The equilibrium between these two tissues represents an important issue for carrot quality, but the knowledge about the respective carotenoid accumulation is sparse. The aim of this work was (i) to investigate if variation in carotenoid biosynthesis gene expression could explain differences in carotenoid content in phloem and xylem tissues and (ii) to investigate if this regulation is differentially modulated in the respective tissues by water-restricted growing conditions. In this work, five carrot genotypes contrasting by their root color were studied in control and water-restricted conditions. Carotenoid content and the relative expression of 13 genes along the carotenoid biosynthesis pathway were measured in the respective tissues. Results showed that in orange genotypes and the purple one, carotenoid content was higher in phloem compared to xylem. For the red one, no differences were observed. Moreover, in control condition, variations in gene expression explained the different carotenoid accumulations in both tissues, while in water-restricted condition, no clear association between gene expression pattern and variations in carotenoid content could be detected except in orange-rooted genotypes. This work shows that the structural aspect of carrot root is more important for carotenoid accumulation in relation with gene expression levels than the consequences of expression changes upon water restriction.
Assuntos
Carotenoides/fisiologia , Daucus carota/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/fisiologia , Carotenoides/análise , Carotenoides/metabolismo , Daucus carota/crescimento & desenvolvimento , Immunoblotting , Floema/fisiologia , Raízes de Plantas/química , Xilema/fisiologiaRESUMO
DNA replication is essential to maintain genome integrity in S phase of the cell division cycle. Accumulation of stalled replication forks is a major source of genetic instability, and likely constitutes a key driver of tumorigenesis. The mechanisms of regulation of replication fork progression have therefore been extensively investigated, in particular with DNA combing, an optical mapping technique that allows the stretching of single molecules and the mapping of active region for DNA synthesis by fluorescence microscopy. DNA linearization in nanochannels has been successfully used to probe genomic information patterns along single chromosomes, and has been proposed to be a competitive alternative to DNA combing. Yet this conjecture remains to be confirmed experimentally. Here, two complementary techniques are established to detect the genomic distribution of tracks of newly synthesized DNA in human cells by optical mapping in nanochannels. Their respective advantages and limitations are compared, and applied them to detect deregulations of the replication program induced by the antitumor drug hydroxyurea. The developments here thus broaden the field of applications accessible to nanofluidic technologies, and can be used in the future as part for molecular diagnostics in the context of high throughput cancer drug screening.
Assuntos
Replicação do DNA , Nanopartículas/química , Imagem Óptica/métodos , Difusão , Humanos , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Espectrometria por Raios X , Compostos de Vanádio/químicaRESUMO
Understanding the mechanisms that determine the diffusion and interaction of macromolecules (such as proteins and polysaccharides) that disperse through dense media is an important fundamental issue in the development of innovative technological and medical applications. In the current work, the partitioning and diffusion of macromolecules of different sizes (from 4 to 10 nm in diameter) and shapes (linear or spherical) within dispersions of casein micelles (a protein microgel) is studied. The coefficients for diffusion and partition are measured using FRAP (fluorescence recovery after photobleaching) and analyzed with respect to the structural characteristics of the microgel determined by the use of TEM (transmission electron microscopy) tomography. The results show that the casein microgel displays a nonspecific attractive interaction for all macromolecules studied. When the macromolecular probes are spherical, this affinity is clearly size-dependent, with stronger attraction for the larger probes. The current data show that electrostatic effects cannot account for such an attraction. Rather, nonspecific hydration molecular forces appear to explain these results. These findings show how weak nonspecific forces affect the diffusion and partitioning of proteins and polysaccharides in a dense protein environment. These results could be useful to better understand the mechanisms of diffusion and partitioning in other media such as cells and tissues. Furthermore, there arises the possibility of using the casein micelle as a size-selective molecular device.