RESUMO
Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Plasticidade Neuronal , Densidade Pós-Sináptica/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Camundongos , Neurônios/metabolismo , Transição de Fase , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Ratos , Proteínas Ativadoras de ras GTPase/químicaRESUMO
The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.
RESUMO
Arc is a synaptic protein essential for memory consolidation. Recent studies indicate that Arc originates in evolution from a Ty3-Gypsy retrotransposon GAG domain. The N-lobe of Arc GAG domain acquired a hydrophobic binding pocket in higher vertebrates that is essential for Arc's canonical function to weaken excitatory synapses. Here, we report that Arc GAG also acquired phosphorylation sites that can acutely regulate its synaptic function. CaMKII phosphorylates the N-lobe of the Arc GAG domain and disrupts an interaction surface essential for high-order oligomerization. In Purkinje neurons, CaMKII phosphorylation acutely reverses Arc's synaptic action. Mutant Arc that cannot be phosphorylated by CaMKII enhances metabotropic receptor-dependent depression in the hippocampus but does not alter baseline synaptic transmission or long-term potentiation. Behavioral studies indicate that hippocampus- and amygdala-dependent learning requires Arc GAG domain phosphorylation. These studies provide an atomic model for dynamic and local control of Arc function underlying synaptic plasticity and memory.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo , Sequência de Aminoácidos , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Técnicas de Introdução de Genes , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Células de Purkinje/citologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sinapses/fisiologia , Transmissão SinápticaRESUMO
Learning is thought to involve changes in glutamate receptors at synapses, submicron structures that mediate communication between neurons in the central nervous system. Due to their small size and high density, synapses are difficult to resolve in vivo, limiting our ability to directly relate receptor dynamics to animal behavior. Here we developed a combination of computational and biological methods to overcome these challenges. First, we trained a deep-learning image-restoration algorithm that combines the advantages of ex vivo super-resolution and in vivo imaging modalities to overcome limitations specific to each optical system. When applied to in vivo images from transgenic mice expressing fluorescently labeled glutamate receptors, this restoration algorithm super-resolved synapses, enabling the tracking of behavior-associated synaptic plasticity with high spatial resolution. This method demonstrates the capabilities of image enhancement to learn from ex vivo data and imaging techniques to improve in vivo imaging resolution.
Assuntos
Neurônios , Sinapses , Camundongos , Animais , Sinapses/fisiologia , Aumento da Imagem , Camundongos Transgênicos , Plasticidade NeuronalRESUMO
Assemblies of ß-amyloid (Aß) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by ß-secretase (BACE1) and γ-secretase. The generation of Aß is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aß. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both hebbian and non-hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity dependence. Genetic deletion of Arc reduces Aß load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.
Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Animais , Membrana Celular/metabolismo , Humanos , Camundongos , Camundongos KnockoutRESUMO
In multicellular organisms, cell-adhesion molecules connect cells into tissues and mediate intercellular signaling between these cells. In vertebrate brains, synaptic cell-adhesion molecules (SAMs) guide the formation, specification, and plasticity of synapses. Some SAMs, when overexpressed in cultured neurons or in heterologous cells co-cultured with neurons, drive formation of synaptic specializations onto the overexpressing cells. However, genetic deletion of the same SAMs from neurons often has no effect on synapse numbers, but frequently severely impairs synaptic transmission, suggesting that most SAMs control the function and plasticity of synapses (i.e., organize synapses) instead of driving their initial establishment (i.e., make synapses). Since few SAMs were identified that mediate initial synapse formation, it is difficult to develop methods that enable experimental control of synaptic connections by targeted expression of these SAMs. To overcome this difficulty, we engineered novel SAMs from bacterial proteins with no eukaryotic homologues that drive synapse formation. We named these engineered adhesion proteins "Barnoligin" and "Starexin" because they were assembled from parts of Barnase and Neuroligin-1 or of Barstar and Neurexin3ß, respectively. Barnoligin and Starexin robustly induce the formation of synaptic specializations in a specific and directional manner in cultured neurons. Synapse formation by Barnoligin and Starexin requires both their extracellular Barnase- and Barstar-derived interaction domains and their Neuroligin- and Neurexin-derived intracellular signaling domains. Our findings support a model of synapse formation whereby trans-synaptic interactions by SAMs drive synapse organization via adhesive interactions that activate signaling cascades.
Assuntos
Moléculas de Adesão Celular Neuronais , Sinapses , Células Cultivadas , Moléculas de Adesão Celular Neuronais/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Neurônios/metabolismo , Técnicas de Cocultura , Hipocampo/metabolismoRESUMO
SYNGAP1 is a Ras-GTPase-activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDDs). These mutations are highly penetrant and cause SYNGAP1-related intellectual disability (SRID), an NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances. Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning, and memory and have seizures. However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A. While reduction in Syngap1 mRNA varies from 30 to 50% depending on the specific mutation, both models show ~50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder.
Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Animais , Camundongos , Códon sem Sentido , Convulsões , Encéfalo , Modelos Animais de Doenças , Transtornos da Memória , Proteínas Ativadoras de ras GTPaseRESUMO
The postsynaptic density (PSD) of excitatory synapses contains a highly organized protein network with thousands of proteins and is a key node in the regulation of synaptic plasticity. To gain new mechanistic insight into experience-induced changes in the PSD, we examined the global dynamics of the hippocampal PSD proteome and phosphoproteome in mice following four different types of experience. Mice were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated from individual mice to investigate molecular mechanisms underlying experience-dependent remodeling of synapses. We developed a new strategy to identify and quantify the relatively low level of site-specific phosphorylation of PSD proteome from the hippocampus, by using a modified iTRAQ-based TiSH protocol. In the PSD, we identified 3938 proteins and 2761 phosphoproteins in the sequential strategy covering a total of 4968 unique protein groups (at least two peptides including a unique peptide). On the phosphoproteins, we identified a total of 6188 unambiguous phosphosites (75%Assuntos
Proteínas de Membrana
, Proteoma
, Camundongos
, Animais
, Proteoma/metabolismo
, Proteínas de Membrana/metabolismo
, Proteínas do Tecido Nervoso/metabolismo
, Hipocampo/metabolismo
, Sinapses/metabolismo
, Peptídeos/metabolismo
, Fosfoproteínas/metabolismo
, Proteína 4 Homóloga a Disks-Large/metabolismo
RESUMO
Rapid advances in genetics are linking mutations on genes to diseases at an exponential rate, yet characterizing the gene-mutation-cell-behavior relationships essential for precision medicine remains a daunting task. More than 350 mutations on small GTPase BRaf are associated with various tumors, and â¼40 mutations are associated with the neurodevelopmental disorder cardio-facio-cutaneous syndrome (CFC). We developed a fast cost-effective lentivirus-based rapid gene replacement method to interrogate the physiopathology of BRaf and â¼50 disease-linked BRaf mutants, including all CFC-linked mutants. Analysis of simultaneous multiple patch-clamp recordings from 6068 pairs of rat neurons with validation in additional mouse and human neurons and multiple learning tests from 1486 rats identified BRaf as the key missing signaling effector in the common synaptic NMDA-R-CaMKII-SynGap-Ras-BRaf-MEK-ERK transduction cascade. Moreover, the analysis creates the original big data unveiling three general features of BRaf signaling. This study establishes the first efficient procedure that permits large-scale functional analysis of human disease-linked mutations essential for precision medicine.
Assuntos
Sistema de Sinalização das MAP Quinases/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Transmissão Sináptica/genética , Animais , Células Cultivadas , Doença/genética , Feminino , Técnicas de Transferência de Genes , Humanos , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Ratos Sprague-Dawley , Técnicas de Cultura de TecidosRESUMO
Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, "all-or-none," elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (PyrâPV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of PyrâPV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of PyrâPV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local PyrâPV circuitry gates experience-dependent cortical plasticity.
Assuntos
Dominância Ocular , Interneurônios/fisiologia , Inibição Neural , Plasticidade Neuronal , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Animais , Proteína C-Reativa/metabolismo , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/citologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.
Assuntos
Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Predisposição Genética para Doença/genética , Ácido Glutâmico/fisiologia , Sinapses/genética , Sinapses/fisiologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Modelos Neurológicos , Esquizofrenia/genética , Esquizofrenia/fisiopatologiaRESUMO
Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.
Assuntos
Técnicas Biossensoriais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Miócitos Cardíacos/enzimologia , Neurônios/enzimologia , Imagem Óptica/métodos , Alprostadil/farmacologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Di-Hidroxifenilalanina/farmacologia , Dinoprostona/farmacologia , Corantes Fluorescentes/química , Expressão Gênica , Biblioteca Gênica , Genes Reporter , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Humanos , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Cultura Primária de Células , Transdução de SinaisRESUMO
Hebbian plasticity is a key mechanism for higher brain functions, such as learning and memory. This form of synaptic plasticity primarily involves the regulation of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) abundance and properties, whereby AMPARs are inserted into synapses during long-term potentiation (LTP) or removed during long-term depression (LTD). The molecular mechanisms underlying AMPAR trafficking remain elusive, however. Here we show that glutamate receptor interacting protein 1 (GRIP1), an AMPAR-binding protein shown to regulate the trafficking and synaptic targeting of AMPARs, is required for LTP and learning and memory. GRIP1 is recruited into synapses during LTP, and deletion of Grip1 in neurons blocks synaptic AMPAR accumulation induced by glycine-mediated depolarization. In addition, Grip1 knockout mice exhibit impaired hippocampal LTP, as well as deficits in learning and memory. Mechanistically, we find that phosphorylation of serine-880 of the GluA2 AMPAR subunit (GluA2-S880) is decreased while phosphorylation of tyrosine-876 on GluA2 (GluA2-Y876) is elevated during chemically induced LTP. This enhances the strength of the GRIP1-AMPAR association and, subsequently, the insertion of AMPARs into the postsynaptic membrane. Together, these results demonstrate an essential role of GRIP1 in regulating AMPAR trafficking during synaptic plasticity and learning and memory.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Receptores de AMPA/genética , Receptores de Glutamato/genética , Animais , Proteínas de Transporte/genética , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Camundongos Knockout , Fosforilação/genética , Sinapses/genética , Sinapses/metabolismoRESUMO
Hebbian plasticity, comprised of long-term potentiation (LTP) and depression (LTD), allows neurons to encode and respond to specific stimuli; while homeostatic synaptic scaling is a counterbalancing mechanism that enables the maintenance of stable neural circuits. Both types of synaptic plasticity involve the control of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) abundance, which is modulated by AMPAR phosphorylation. To address the necessity of GluA2 phospho-Y876 in synaptic plasticity, we generated phospho-deficient GluA2 Y876F knock-in mice. We show that, while GluA2 phospho-Y876 is not necessary for Hebbian plasticity, it is essential for both in vivo and in vitro homeostatic upscaling. Bidirectional changes in GluA2 phospho-Y876 were observed during homeostatic scaling, with a decrease during downscaling and an increase during upscaling. GluA2 phospho-Y876 is necessary for synaptic accumulation of glutamate receptor interacting protein 1 (GRIP1), a crucial scaffold protein that delivers AMPARs to synapses, during upscaling. Furthermore, increased phosphorylation at GluA2 Y876 increases GluA2 binding to GRIP1. These results demonstrate that AMPAR trafficking during homeostatic upscaling can be gated by a single phosphorylation site on the GluA2 subunit.
Assuntos
Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Tirosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Transporte Proteico , Sinapses/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismoRESUMO
Memory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory. Key plasticity genes, such as the immediate early gene Arc, are induced by learning and by LTP induction. Mice that lack Arc have severe deficits in memory consolidation, and Arc has been implicated in numerous other forms of synaptic plasticity, including long-term depression and cell-to-cell signaling. Here, we take a comprehensive approach to determine if Arc is necessary for hippocampal LTP in male and female mice. Using a variety of Arc knock-out (KO) lines, we found that germline Arc KO mice show no deficits in CA1 LTP induced by high-frequency stimulation and enhanced LTP induced by theta-burst stimulation. Temporally restricting the removal of Arc to adult animals and spatially restricting it to the CA1 using Arc conditional KO mice did not have an effect on any form of LTP. Similarly, acute application of Arc antisense oligodeoxynucleotides had no effect on hippocampal CA1 LTP. Finally, the maintenance of in vivo LTP in the dentate gyrus of Arc KO mice was normal. We conclude that Arc is not necessary for hippocampal LTP and may mediate memory consolidation through alternative mechanisms.SIGNIFICANCE STATEMENT The immediate early gene Arc is critical for maintenance of long-term memory. How Arc mediates this process remains unclear, but it has been proposed to sustain Hebbian synaptic potentiation, which is a key component of memory encoding. This form of plasticity is modeled experimentally by induction of LTP, which increases Arc mRNA and protein expression. However, mechanistic data implicates Arc in the endocytosis of AMPA-type glutamate receptors and the weakening of synapses. Here, we took a comprehensive approach to determine if Arc is necessary for hippocampal LTP. We find that Arc is not required for LTP maintenance and may regulate memory storage through alternative mechanisms.
Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Giro Denteado/fisiologia , Estimulação Elétrica , Feminino , Genes Precoces , Células Germinativas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Ritmo TetaRESUMO
Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.
Assuntos
Fosfolipase D , Animais , Encéfalo , Camundongos , Ácidos Fosfatídicos , Isoformas de Proteínas , RetinaRESUMO
SynGAP is a potent regulator of biochemical signaling in neurons and plays critical roles in neuronal function. It was first identified in 1998, and has since been extensively characterized as a mediator of synaptic plasticity. Because of its involvement in synaptic plasticity, SynGAP has emerged as a critical protein for normal cognitive function. In recent years, mutations in the SYNGAP1 gene have been shown to cause intellectual disability in humans and have been linked to other neurodevelopmental disorders, such as autism spectrum disorders and schizophrenia. While the structure and biochemical function of SynGAP have been well characterized, a unified understanding of the various roles of SynGAP at the synapse and its contributions to neuronal function remains to be achieved. In this review, we summarize and discuss the current understanding of the multifactorial role of SynGAP in regulating neuronal function gathered over the last two decades.
Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Humanos , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.
Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Expansão das Repetições de DNA/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Quadruplex G , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/genética , RNA/genética , RNA/metabolismoRESUMO
Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from female-enriched multiplex families with severe disease, enhancing the detection of key autism genes in modest numbers of cases. Here we show the use of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated δ-catenin protein (CTNND2) in female-enriched multiplex families and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wild-type and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as female-enriched multiplex families, are of innate value in multifactorial disorders.
Assuntos
Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Cateninas/deficiência , Cateninas/genética , Animais , Encéfalo/embriologia , Cateninas/metabolismo , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Variações do Número de Cópias de DNA/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Exoma/genética , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/patologia , Humanos , Masculino , Camundongos , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto , Rede Nervosa , Neurônios/citologia , Neurônios/metabolismo , Caracteres Sexuais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , delta CateninaRESUMO
Memory formation is believed to result from changes in synapse strength and structure. While memories may persist for the lifetime of an organism, the proteins and lipids that make up synapses undergo constant turnover with lifetimes from minutes to days. The molecular basis for memory maintenance may rely on a subset of long-lived proteins (LLPs). While it is known that LLPs exist, whether such proteins are present at synapses is unknown. We performed an unbiased screen using metabolic pulse-chase labeling in vivo in mice and in vitro in cultured neurons combined with quantitative proteomics. We identified synaptic LLPs with half-lives of several months or longer. Proteins in synaptic fractions generally exhibited longer lifetimes than proteins in cytosolic fractions. Protein turnover was sensitive to pharmacological manipulations of activity in neuronal cultures or in mice exposed to an enriched environment. We show that synapses contain LLPs that may underlie stabile long-lasting changes in synaptic structure and function.