Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 37(22): 4041-4047, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34110413

RESUMO

MOTIVATION: Monoclonal antibody (mAb) therapeutics are often produced from non-human sources (typically murine), and can therefore generate immunogenic responses in humans. Humanization procedures aim to produce antibody therapeutics that do not elicit an immune response and are safe for human use, without impacting efficacy. Humanization is normally carried out in a largely trial-and-error experimental process. We have built machine learning classifiers that can discriminate between human and non-human antibody variable domain sequences using the large amount of repertoire data now available. RESULTS: Our classifiers consistently outperform the current best-in-class model for distinguishing human from murine sequences, and our output scores exhibit a negative relationship with the experimental immunogenicity of existing antibody therapeutics. We used our classifiers to develop a novel, computational humanization tool, Hu-mAb, that suggests mutations to an input sequence to reduce its immunogenicity. For a set of therapeutic antibodies with known precursor sequences, the mutations suggested by Hu-mAb show substantial overlap with those deduced experimentally. Hu-mAb is therefore an effective replacement for trial-and-error humanization experiments, producing similar results in a fraction of the time. AVAILABILITY AND IMPLEMENTATION: Hu-mAb (humanness scoring and humanization) is freely available to use at opig.stats.ox.ac.uk/webapps/humab. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Anticorpos Monoclonais , Aprendizado de Máquina , Animais , Camundongos
2.
Gastroenterology ; 158(8): 2250-2265.e20, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060001

RESUMO

BACKGROUND AND AIMS: Glypican 3 (GPC3) is an oncofetal antigen involved in Wnt-dependent cell proliferation that is highly expressed in hepatocellular carcinoma (HCC). We investigated whether the functions of chimeric antigen receptors (CARs) that target GPC3 are affected by their antibody-binding properties. METHODS: We collected peripheral blood mononuclear cells from healthy donors and patients with HCC and used them to create CAR T cells, based on the humanized YP7 (hYP7) and HN3 antibodies, which have high affinities for the C-lobe and N-lobe of GPC3, respectively. NOD/SCID/IL-2Rgcnull (NSG) mice were given intraperitoneal injections of luciferase-expressing (Luc) Hep3B or HepG2 cells and after xenograft tumors formed, mice were given injections of saline or untransduced T cells (mock control), or CAR (HN3) T cells or CAR (hYP7) T cells. In other NOD/SCID/IL-2Rgcnull (NSG) mice, HepG2-Luc or Hep3B-Luc cells were injected into liver, and after orthotopic tumors formed, mice were given 1 injection of CAR (hYP7) T cells or CD19 CAR T cells (control). We developed droplet digital polymerase chain reaction and genome sequencing methods to analyze persistent CAR T cells in mice. RESULTS: Injections of CAR (hYP7) T cells eliminated tumors in 66% of mice by week 3, whereas CAR (HN3) T cells did not reduce tumor burden. Mice given CAR (hYP7) T cells remained tumor free after re-challenge with additional Hep3B cells. The CAR T cells induced perforin- and granzyme-mediated apoptosis and reduced levels of active ß-catenin in HCC cells. Mice injected with CAR (hYP7) T cells had persistent expansion of T cells and subsets of polyfunctional CAR T cells via antigen-induced selection. These T cells were observed in the tumor microenvironment and spleen for up to 7 weeks after CAR T-cell administration. Integration sites in pre-infusion CAR (HN3) and CAR (hYP7) T cells were randomly distributed, whereas integration into NUPL1 was detected in 3.9% of CAR (hYP7) T cells 5 weeks after injection into tumor-bearing mice and 18.1% of CAR (hYP7) T cells at week 7. There was no common site of integration in CAR (HN3) or CD19 CAR T cells from tumor-bearing mice. CONCLUSIONS: In mice with xenograft or orthoptic liver tumors, CAR (hYP7) T cells eliminate GPC3-positive HCC cells, possibly by inducing perforin- and granzyme-mediated apoptosis or reducing Wnt signaling in tumor cells. GPC3-targeted CAR T cells might be developed for treatment of patients with HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Glipicanas/metabolismo , Imunoterapia Adotiva , Neoplasias Hepáticas/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/transplante , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glipicanas/genética , Glipicanas/imunologia , Granzimas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Perforina/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral , Microambiente Tumoral , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Curr Opin Struct Biol ; 74: 102379, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35490649

RESUMO

Antibodies are currently the most important class of biotherapeutics and are used to treat numerous diseases. Recent advances in computational methods are ushering in a new era of antibody design, driven in part by accurate structure prediction. Previously, structure-based antibody design has been limited to a relatively small number of cases where accurate structures or models of both the target antigen and antibody were available. As we move towards a time where it is possible to accurately model most antibodies and antigens, and to reliably predict their binding site, there is vast potential for true computational antibody design. In this review, we describe the latest methods that promise to launch a paradigm shift towards entirely in silico structure-based antibody design.


Assuntos
Anticorpos , Antígenos , Anticorpos/química , Antígenos/química , Sítios de Ligação , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA