RESUMO
Few studies have investigated the effects of nutrition during the periconception and early gestation periods on fetal and placental development in cattle. In this study, nulliparous yearling heifers (n=360) were individually fed a diet high or low in protein (HPeri and LPeri) beginning 60 days before conception. From 24 to 98 days after conception, half of each treatment group was changed to the alternative high- or low-protein diet (HPost and LPost) yielding four groups in a 2×2 factorial design. A subset of heifers (n=46) was necropsied at 98 days after conception and fetoplacental development assessed. Placentome number and volume decreased in response to LPeri and LPost diets respectively. Absolute lung, pancreas, septum and ventricle weights decreased in LPost versus HPost fetuses, whereas the post-conception diet altered absolute and relative liver and brain weights depending on sex. Similarly, changes in fetal hepatic gene expression of factors regulating growth, glucose output and lipid metabolism were induced by protein restriction in a sex-specific manner. At term, neonatal calf and placental measures were not different. Protein restriction of heifers during the periconception and early gestation periods alters fetoplacental development and hepatic gene expression. These changes may contribute to functional consequences for progeny, but this may not be apparent from gross morphometry at birth.
Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/crescimento & desenvolvimento , Dieta Rica em Proteínas , Dieta com Restrição de Proteínas , Desenvolvimento Fetal , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Placentação , Animais , Animais Recém-Nascidos , Bovinos/genética , Bovinos/metabolismo , Metabolismo Energético , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Valor Nutritivo , Tamanho do Órgão , Gravidez , Fatores SexuaisRESUMO
During ovarian development stroma from the mesonephros penetrates and expands into the ovarian primordium and thus appears to be involved, at least physically, in the formation of ovigerous cords, follicles and surface epithelium. Cortical stromal development during gestation in bovine fetal ovaries (n=27) was characterised by immunohistochemistry and by mRNA analyses. Stroma was identified by immunostaining of stromal matrix collagen type I and proliferating cells were identified by Ki67 expression. The cortical and medullar volume expanded across gestation, with the rate of cortical expansion slowing over time. During gestation, the proportion of stroma in the cortex and total volume in the cortex significantly increased (P<0.05). The proliferation index and numerical density of proliferating cells in the stroma significantly decreased (P<0.05), whereas the numerical density of cells in the stroma did not change (P>0.05). The expression levels of 12 genes out of 18 examined, including osteoglycin (OGN) and lumican (LUM), were significantly increased later in development (P<0.05) and the expression of many genes was positively correlated with other genes and with gestational age. Thus, the rate of cortical stromal expansion peaked in early gestation due to cell proliferation, whilst late in development expression of extracellular matrix genes increased.
Assuntos
Proliferação de Células/fisiologia , Expressão Gênica , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Animais , Bovinos , Colágeno Tipo I/metabolismo , Feminino , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Ovário/citologia , Ovário/metabolismoRESUMO
The X-ray Fluorescence Micro-spectroscopy (XFM) beamline at the Australian Synchrotron was used to image 97 follicle histological sections from 45 different bovine ovaries focusing on healthy antral follicles ranging from small (<4 mm) up to preovulatory sizes (>16 mm) and on antral follicles undergoing atresia. This analysis identified five elements (Cu, Fe, Zn, Se and Br) consistently present within the ovarian tissue with Fe, Zn and Se localised to specific structures. GeoPIXE v6.4g was subsequently used to extract quantitative information pertaining to the elemental concentrations surrounding each of these follicles. Statistical analysis suggested that significant elemental differences were evident between follicle groups sorted according to their health status (Fe and Br), and their size (Se). Se appeared to be the element which most greatly distinguished large antral follicles from smaller counterparts. The ability to use synchrotron radiation to measure trace element distributions in bovine follicles at such high resolutions could have a significant impact on understanding the mechanisms of follicular development. This research is intended to form a baseline study of healthy cycling ovaries which could later be extended to disease states, thereby improving our current understanding of infertility and endocrine diseases involving the ovary.
Assuntos
Bromo/análise , Cobre/análise , Ferro/análise , Folículo Ovariano/química , Selênio/análise , Zinco/análise , Animais , Bovinos , Feminino , Imagem Óptica , Folículo Ovariano/ultraestrutura , Raios XRESUMO
Correction for 'X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function' by M. J. Ceko et al., Metallomics, 2014, DOI: .
RESUMO
Studies of selenium (Se) status indicate that Se is necessary for fertility but how precisely is not known. We aimed to show that Se was important in bovine female reproductive function. The elemental distribution in the bovine ovary (n = 45 sections) was identified by X-ray fluorescence (XRF) imaging. Se was consistently localized to the granulosa cell layer of large (>10 mm) healthy follicles. Inductively Coupled Plasma - Mass Spectrometry revealed tenfold higher Se in the bovine follicle wall compared to corpora lutea. Gene expression analysis of selenoprotein genes GPX1, GPX3, VIMP and SELM in bovine granulosa cells revealed that only GPX1 was significantly up-regulated in large healthy follicles compared to the small healthy or atretic follicles (P < 0.05). Western immunoblotting identified GPX1 protein in bovine granulosa cells of large healthy follicles, but not of small healthy follicles. To assess if GPX1 was important in human follicles, cumulus cells from women undergoing IVF/ICSI with single embryo transfer were collected. Oocytes and embryos were cultured and transferred independently in 30 patients undergoing elective single embryo transfer. Gene expression of GPX1 was significantly higher in human cumulus cells from cumulus-oocyte complexes yielding a pregnancy (P < 0.05). We present the first XRF imaging of mammalian ovaries showing that Se is consistently localized to the granulosa cells of large healthy follicles. We conclude that Se and selenoproteins are elevated in large healthy follicles and may play a critical role as an antioxidant during late follicular development.
Assuntos
Células do Cúmulo/metabolismo , Glutationa Peroxidase/metabolismo , Folículo Ovariano/metabolismo , Selênio/metabolismo , Animais , Bovinos , Células Cultivadas , Células do Cúmulo/química , Feminino , Perfilação da Expressão Gênica , Glutationa Peroxidase/análise , Glutationa Peroxidase/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Folículo Ovariano/química , Reação em Cadeia da Polimerase , Espectrometria por Raios X , Glutationa Peroxidase GPX1RESUMO
The isolation of islets by collagenase digestion can cause damage and impact the efficiency of islet engraftment and function. In this study, we assessed the basement membranes (BMs) of mouse pancreatic islets as a molecular biomarker for islet integrity, damage after isolation, and islet repair in vitro as well as in the absence or presence of an immune response after transplantation. Immunofluorescence staining of BM matrix proteins and the endothelial cell marker platelet endothelial cell adhesion molecule-1 (PECAM-1) was performed on pancreatic islets in situ, isolated islets, islets cultured for 4 days, and islet grafts at 3-10 days posttransplantation. Flow cytometry was used to investigate the expression of BM matrix proteins in isolated islet ß-cells. The islet BM, consisting of collagen type IV and components of Engelbreth-Holm-Swarm (EHS) tumor laminin 111, laminin α2, nidogen-2, and perlecan in pancreatic islets in situ, was completely lost during islet isolation. It was not reestablished during culture for 4 days. Peri- and intraislet BM restoration was identified after islet isotransplantation and coincided with the migration pattern of PECAM-1(+) vascular endothelial cells (VECs). After islet allotransplantation, the restoration of VEC-derived peri-islet BMs was initiated but did not lead to the formation of the intraislet vasculature. Instead, an abnormally enlarged peri-islet vasculature developed, coinciding with islet allograft rejection. The islet BM is a sensitive biomarker of islet damage resulting from enzymatic isolation and of islet repair after transplantation. After transplantation, remodeling of both peri- and intraislet BMs restores ß-cell-matrix attachment, a recognized requirement for ß-cell survival, for isografts but not for allografts. Preventing isolation-induced islet BM damage would be expected to preserve the intrinsic barrier function of islet BMs, thereby influencing both the effector mechanisms required for allograft rejection and the antirejection strategies needed for allograft survival.