Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Biomed Sci ; 29(1): 3, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35034634

RESUMO

BACKGROUND: Sp1, an important transcription factor, is involved in the progression of various cancers. Our previous studies have indicated that Sp1 levels are increased in the early stage of lung cancer progression but decrease during the late stage, leading to poor prognosis. In addition, estrogen has been shown to be involved in lung cancer progression. According to previous studies, Sp1 can interact with the estrogen receptor (ER) to coregulate gene expression. The role of interaction between Sp1 and ER in lung cancer progression is still unknown and will be clarified in this study. METHODS: The clinical relevance between Sp1 levels and survival rates in young women with lung cancer was studied by immunohistochemistry. We validated the sex dependence of lung cancer progression in EGFRL858R-induced lung cancer mice. Wound healing assays, chamber assays and sphere formation assays in A549 cells, Taxol-induced drug-resistant A549 (A549-T24) and estradiol (E2)-treated A549 (E2-A549) cells were performed to investigate the roles of Taxol and E2 in lung cancer progression. Luciferase reporter assays, immunoblot and q-PCR were performed to evaluate the interaction between Sp1, microRNAs and CD44. Tail vein-injected xenograft experiments were performed to study lung metastasis. Samples obtained from lung cancer patients were used to study the mRNA level of CD44 by q-PCR and the protein levels of Sp1 and CD44 by immunoblot and immunohistochemistry. RESULTS: In this study, we found that Sp1 expression was decreased in premenopausal women with late-stage lung cancer, resulting in a poor prognosis. Tumor formation was more substantial in female EGFRL858R mice than in male mice and ovariectomized female mice, indicating that E2 might be involved in the poor prognosis of lung cancer. We herein report that Sp1 negatively regulates metastasis and cancer stemness in E2-A549 and A549-T24 cells. Furthermore, E2 increases the mRNA and protein levels of RING finger protein 4 (RNF4), which is the E3-ligase of Sp1, and thereby decreases Sp1 levels by promoting Sp1 degradation. Sp1 can be recruited to the promoter of miR-3194-5p, and positively regulate its expression. Furthermore, there was a strong inverse correlation between Sp1 and CD44 levels in clinical lung cancer specimens. Sp1 inhibited CD44 expression by increasing the expression of miR-3194-5p, miR-218-5p, miR-193-5p, miR-182-5p and miR-135-5p, ultimately resulting in lung cancer malignancy. CONCLUSION: Premenopausal women with lung cancer and decreased Sp1 levels have a poor prognosis. E2 increases RNF4 expression to repress Sp1 levels in premenopausal women with lung cancer, thus decreasing the expression of several miRNAs that can target CD44 and ultimately leading to cancer malignancy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/farmacologia , Feminino , Humanos , Receptores de Hialuronatos/genética , Neoplasias Pulmonares/genética , Masculino , Camundongos , MicroRNAs/genética , Proteínas Nucleares , Fator de Transcrição Sp1/genética , Fatores de Transcrição
2.
J Biomed Sci ; 26(1): 42, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133011

RESUMO

Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.


Assuntos
Progressão da Doença , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo , Humanos , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 112(47): E6562-70, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26554014

RESUMO

The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cocaína/farmacologia , Membrana Nuclear/metabolismo , Receptores sigma/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Monoaminoxidase/genética , Membrana Nuclear/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Fator de Transcrição Sp3 , Síndrome de Abstinência a Substâncias , Receptor Sigma-1
4.
Biochem Biophys Res Commun ; 493(1): 14-19, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28939040

RESUMO

It has been suggested that stress stimuli from the microenvironment maintain a subset of tumor cells with stem-like properties, including drug resistance. Here, we investigate whether Sp1, a stress-responsive factor, regulates stemness gene expression and if its inhibition sensitizes cancer cells to chemotherapy. Hydrogen peroxide- and serum deprivation-induced stresses were performed in glioblastoma (GBM) cells and patient-derived cells, and the effect of the Sp1 inhibitor mithramycin A (MA) on these stress-induced stem cells and temozolomide (TMZ)-resistant cells was evaluated. Sp1 and stemness genes were not commonly overexpressed in clinical GBM samples. However, their expression was highly induced by stress stimuli. Using MA, we demonstrated Sp1 as a critical stemness-related transcriptional factor protecting GBM cells against stress- and TMZ-induced death. Thus, Sp1 inhibition may prevent recurrence of malignant cells persisting after primary therapy.


Assuntos
Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Temozolomida , Resultado do Tratamento
5.
Nucleic Acids Res ; 42(22): 13573-87, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25398907

RESUMO

We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Mitose , Peptidilprolil Isomerase/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Células Cultivadas , DNA/metabolismo , Células HeLa , Humanos , Camundongos , Mitose/genética , Peptidilprolil Isomerase de Interação com NIMA , Fosforilação , Conformação Proteica , Estabilidade Proteica , Fator de Transcrição Sp1/química
6.
Biochim Biophys Acta ; 1843(6): 1135-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24530506

RESUMO

p300 is a transcription cofactor for a number of nuclear proteins. Most studies of p300 have focused on the regulation of its function, which primarily includes its role as a transcription co-factor for a number of nuclear proteins. In this study, we found that p300 was highly phosphorylated and its level was decreased during mitosis and tumorigenesis. In vitro and in vivo experiments aimed showed that cyclin-dependent kinase 1 (CDK1) and ERK1/2 phosphorylated p300 on Ser1038 and Ser2039. Mutations of Ser1038 and Ser2039 increased p300 protein stability and levels. Inhibition of p300 degradation by blocking its phosphorylation decreased the proliferation and metastasis activity of lung cancer cells, indicating that p300 acts as a tumor suppressor in lung cancer tumorigenesis. Investigation of the molecular mechanism showed that blocking p300 phosphorylation disrupted chromatin condensation and the increased the acetylation of histone H3. Analysis of cell cycle progression in HA-p300-S2A-expressing cells by flow cytometry showed that the p300 mutants arrested the cells at S-phase or delayed the mitotic entry and exit. The expression of several important oncogenes, MMP-9, vimentin, ß-catenin, N-cadherin and c-myc, was negatively regulated by p300. In conclusion, during lung tumorigenesis, a phosphorylation-mediated decrease in p300 level enhanced oncogene expression during interphase and decreased histone H3 acetylation during mitosis, which promoted lung cancer progression.


Assuntos
Adenocarcinoma/patologia , Movimento Celular , Proliferação de Células , Proteína p300 Associada a E1A/metabolismo , Neoplasias Pulmonares/patologia , Proteólise , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Western Blotting , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Progressão da Doença , Proteína p300 Associada a E1A/genética , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Transgênicos , Mitose/fisiologia , Invasividade Neoplásica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Células Tumorais Cultivadas , Uteroglobina/genética , Uteroglobina/metabolismo , Cicatrização
7.
Biochim Biophys Acta ; 1843(12): 2843-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25173817

RESUMO

Our previous study indicated that specificity protein-1 (Sp1) is accumulated during hypoxia in an internal ribosomal entry site (IRES)-dependent manner. Herein, we found that the Sp1 was induced strongly at the protein level, but not in the mRNA level, in lung tumor tissue, indicating that translational regulation might contribute to the Sp1 accumulation during tumorigenesis. A further study showed that the translation of Sp1 was dramatically induced through an IRES-dependent pathway. RNA immunoprecipitation analysis of proteins bound to the 5'-untranslated region (5'-UTR) of Sp1 identified interacting protein - nucleolin. Knockdown of nucleolin significantly inhibited IRES-mediated translation of Sp1, suggesting that nucleolin positively facilitates Sp1 IRES activation. Further analysis of the interaction between nucleolin and the 5'-UTR of Sp1 mRNA revealed that the GAR domain was important for IRES-mediated translation of Sp1. Moreover, gefitinib, and LY294002 and MK2206 compounds inhibited IRES-mediated Sp1 translation, implying that activation of the epithelial growth factor receptor (EGFR) pathway via Akt activation triggers the IRES pathway. In conclusion, EGFR activation-mediated nucleolin phosphorylated at Thr641 and Thr707 was recruited to the 5'-UTR of Sp1 as an IRES trans-acting factor to modulate Sp1 translation during lung cancer formation.

8.
Biochim Biophys Acta ; 1843(3): 565-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361335

RESUMO

58-kDa microspherule protein (MSP58) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. Currently, the mechanisms underlying the oncogenic effect of MSP58 are not fully understood. The human telomerase reverse transcriptase (hTERT) gene, which encodes an essential component for telomerase activity that is involved in cellular immortalization and transformation, is strictly regulated at the gene transcription level. Our previous study revealed a novel function of MSP58 in cellular senescence. Here we identify telomerase transcriptional element-interacting factor (TEIF) as a novel MSP58-interacting protein and determine the effect of MSP58 on hTERT transcription. This study thus provides evidence showing MSP58 to be a negative regulator of hTERT expression and telomerase activity. Luciferase reporter assays indicated that MSP58 could suppress the transcription ofhTERTpromoter. Additionally, stable overexpression of MSP58 protein in HT1080 and 293T cells decreased both endogenous hTERT expression and telomerase activity. Conversely, their upregulation was induced by MSP58 silencing. Chromatin immunoprecipitation assays showed that MSP58 binds to the hTERT proximal promoter. Furthermore, overexpression of MSP58 inhibited TEIF-mediated hTERT transactivation, telomerase activation, and cell proliferation promotion. The inhibitory effect of MSP58 occurred through inhibition of TEIF binding to DNA. Ultimately, the HT1080-implanted xenograft mouse model confirmed these cellular effects. Together, our findings provide new insights into both the biological function of MSP58 and the regulation of telomerase/hTERT expression.


Assuntos
Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Linhagem Celular , Núcleo Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Transcrição Gênica , Ativação Transcricional , Regulação para Cima
9.
Cell Death Dis ; 15(3): 225, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499532

RESUMO

Lung cancer is the major cause of death worldwide. Activation of oncogenes or inhibition of tumor suppressors causes cancer formation. Previous studies have indicated that PTEN, as a tumor suppressor, inhibits cancer formation. In this study, we studied the role of PTEN in EGFRL858R-induced lung cancer in vivo. Interestingly, loss of PTEN increased bronchial cell hyperplasia but decreased alveolar cell hyperplasia in EGFRL858R*PTEN-/--induced lung cancer. Systematic analysis of gene expression by RNA-seq showed that several genes related to ciliogenesis were upregulated in EGFRL858R*PTEN-/--induced lung cancer and subsequently showed that bronchial ciliated cells were hyperplastic. Several critical ciliogenesis-related genes, such as Mucin5A, DNAI2, and DNAI3, were found to be regulated by NR2F1. Next, NR2F1 was found to be inhibited by overexpression of PTEN, indicating that PTEN negatively regulates NR2F1, thereby inhibiting the expression of ciliogenesis-related genes and leading to the inhibition of bronchial cell hyperplasia during EGFRL858R-induced lung cancer progression. In addition, we also found that PTEN decreased AKT phosphorylation in A549, KRAS mutant, and H1299 cells but increased AKT phosphorylation in PC9, EGFRL858R, and H1299L858R cells, suggesting that PTEN may function as a tumor suppressor and an oncogene in lung cancers with KRAS mutation and EGFR mutation, respectively. PTEN acts as a double-edged sword that differentially regulates EGFRL858R-induced lung cancer progression in different genomic backgrounds. Understanding the PTEN in lung cancer with different genetic backgrounds will be beneficial for therapy in the future.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hiperplasia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores ErbB/metabolismo , Mutação , Linhagem Celular Tumoral , Fator I de Transcrição COUP/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
10.
Cell Death Differ ; 31(5): 574-591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491202

RESUMO

Drug resistance in cancer therapy is the major reason for poor prognosis. Addressing this clinically unmet issue is important and urgent. In this study, we found that targeting USP24 by the specific USP24 inhibitors, USP24-i and its analogues, dramatically activated autophagy in the interphase and mitotic periods of lung cancer cells by inhibiting E2F4 and TRAF6, respectively. USP24 functional knockout, USP24C1695A, or targeting USP24 by USP24-i-101 inhibited drug resistance and activated autophagy in gefitinib-induced drug-resistant mice with doxycycline-induced EGFRL858R lung cancer, but this effect was abolished after inhibition of autophagy, indicating that targeting USP24-mediated induction of autophagy is required for inhibition of drug resistance. Genomic instability and PD-L1 levels were increased in drug resistant lung cancer cells and were inhibited by USP24-i-101 treatment or knockdown of USP24. In addition, inhibition of autophagy by bafilomycin-A1 significantly abolished the effect of USP24-i-101 on maintaining genomic integrity, decreasing PD-L1 and inhibiting drug resistance acquired in chemotherapy or targeted therapy. In summary, an increase in the expression of USP24 in cancer cells is beneficial for the induction of drug resistance and targeting USP24 by USP24-i-101 optimized from USP24-i inhibits drug resistance acquired during cancer therapy by increasing PD-L1 protein degradation and genomic stability in an autophagy induction-dependent manner.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/antagonistas & inibidores
11.
Nucleic Acids Res ; 39(13): 5412-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21441538

RESUMO

The exact mechanism underlying increases in Sp1 and the physiological consequences thereafter remains unknown. In rat primary cortical neurons, oxygen-glucose deprivation (OGD) causes an increase in H(2)O(2) as well as Sp1 in early ischaemia but apparently does not change mRNA level or Sp1 stability. We hereby identified a longer 5'-UTR in Sp1 mRNA that contains an internal ribosome entry site (IRES) that regulates rapid and efficient translation of existing mRNAs. By using polysomal fragmentation and bicistronic luciferase assays, we found that H(2)O(2) activates IRES-dependent translation. Thus, H(2)O(2) or tempol, a superoxide dismutase-mimetic, increases Sp1 levels in OGD-treated neurons. Further, early-expressed Sp1 binds to Sp1 promoter to cause a late rise in Sp1 in a feed-forward manner. Short hairpin RNA against Sp1 exacerbates OGD-induced apoptosis in primary neurons. While Sp1 levels increase in the cortex in a rat model of stroke, inhibition of Sp1 binding leads to enhanced apoptosis and cortical injury. These results demonstrate that neurons can use H(2)O(2) as a signalling molecule to quickly induce Sp1 translation through an IRES-dependent translation pathway that, in cooperation with a late rise in Sp1 via feed-forward transcriptional activation, protects neurons against ischaemic damage.


Assuntos
Regiões 5' não Traduzidas , Isquemia Encefálica/metabolismo , Peróxido de Hidrogênio/farmacologia , Biossíntese de Proteínas , Fator de Transcrição Sp1/genética , Animais , Glucose/fisiologia , Humanos , Masculino , Neurônios/metabolismo , Oxigênio/fisiologia , Ratos , Ribossomos/metabolismo , Fator de Transcrição Sp1/biossíntese , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Ativação Transcricional
12.
Cell Death Discov ; 9(1): 96, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918558

RESUMO

Tumor heterogeneity is the major factor for inducing drug resistance. p53 is the major defender to maintain genomic stability, which is a high proportion mutated in most of the cancer types. In this study, we established in vivo animal models of gefitinib-induced drug-resistant lung cancer containing EGFRL858R and EGFRL858R*Tp53+/- mice to explore the molecular mechanisms of drug resistance by studying the genomic integrity and global gene expression. The cellular morphology of the lung tumors between gefitinib-induced drug-resistant mice and drug-sensitive mice were very different. In addition, in drug-resistant mice, the expression of many cytoskeleton-related genes were changed, accompanied by decreased amounts of actin filaments and increased amounts of microtubule, indicating that significant cytoskeletal remodeling is induced in gefitinib-induced drug-resistant EGFRL858R and EGFRL858R*Tp53+/- lung cancer mice. The gene expression profiles and involved pathways were different in gefitinib-sensitive, gefitinib-resistant and Tp53+/--mice. Increases in drug resistance and nuclear size (N/C ratio) were found in EGFRL858R*Tp53+/- drug-resistant mice. Mutational hotspot regions for drug resistance via Tp53+/+- and Tp53+/--mediated pathways are located on chromosome 1 and chromosome 11, respectively, and are related to prognosis of lung cancer cohorts. This study not only builds up a gefitinib-induced drug-resistant EGFRL858R lung cancer animal model, but also provides a novel mutation profile in a Tp53+/+- or Tp53+/--mediated manner and induced cytoskeleton remodeling during drug resistance, which could contribute to the prevention of drug resistance during cancer therapy.

13.
Mol Oncol ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140768

RESUMO

Cancer represents a profound challenge to healthcare systems and individuals worldwide. The development of multiple drug resistance is a major problem in cancer therapy and can result in progression of the disease. In our previous studies, we developed small-molecule inhibitors targeting ubiquitin-specific peptidase 24 (USP24) to combat drug-resistant lung cancer. Recently, we found that the USP24 inhibitor NCI677397 induced ferroptosis, a type of programmed cell death, in drug-resistant cancer cells by increasing lipid reactive oxygen species (ROS) levels. In the present study, we investigated the molecular mechanisms and found that the targeting of USP24 by NCI677397 increased gene expression of most lipogenesis-related genes, such as acyl-CoA synthetase long-chain family member 4 (ACSL4), and activated autophagy. In addition, the activity of several antioxidant enzymes, such as glutathione peroxidase 4 (GPX4) and dihydrofolate reductase (DHFR), was inhibited by NCI677397 treatment via an increase in protein degradation, thereby inducing lipid ROS production and lipid peroxidation. In summary, we demonstrated that NCI677397 induced a marked increase in lipid ROS levels, subsequently causing lipid peroxidation and leading to the ferroptotic death of drug-resistant cancer cells. Our study provides new insights into the clinical use of USP24 inhibitors as ferroptosis inducers (FINs) to block drug resistance during chemotherapy.

14.
Mol Pharmacol ; 82(6): 1115-28, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22956772

RESUMO

Previous studies have shown that the inhibitory effect of betulinic acid (BA) on specificity protein 1 (Sp1) expression is involved in the prevention of cancer progression, but the mechanism of this effect remains to be delineated. In this study, we determined that BA treatment in HeLa cells increased the sumoylation of Sp1 by inhibiting sentrin-specific protease 1 expression. The subsequent recruitment of E3 ubiquitin-protein ligase RING finger protein 4 resulted in ubiquitin-mediated degradation in a 26S-proteosome-dependent pathway. In addition, both BA treatment and mithramycin A (MMA) treatment inhibited lung tumor growth and down-regulated Sp1 protein expression in Kras(G12D)-induced lung cancers of bitransgenic mice. In gene expression profiles of Kras(G12D)-induced lung cancers in bitransgenic mice with and without Sp1 inhibition, 542 genes were affected by MMA treatment. One of the gene products, cyclin A2, which was involved in the S and G(2)/M phase transition during cell cycle progression, was investigated in detail because its expression was regulated by Sp1. The down-regulation of cyclin A2 by BA treatment resulted in decreased retinoblastoma protein phosphorylation and cell cycle G(2)/M arrest. The BA-mediated cellular Sp1 degradation and antitumor effect were also confirmed in a xenograft mouse model by using H1299 cells. The knockdown of Sp1 in lung cancer cells attenuated the tumor-suppressive effect of BA. Taken together, the results of this study clarify the mechanism of BA-mediated Sp1 degradation and identify a pivotal role for Sp1 in the BA-induced repression of lung cancer growth.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo , Sumoilação/efeitos dos fármacos , Triterpenos/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Cisteína Endopeptidases , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Feminino , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Triterpenos Pentacíclicos , Fosforilação/efeitos dos fármacos , Plicamicina/análogos & derivados , Plicamicina/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição Sp1/genética , Sumoilação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Betulínico
15.
J Biol Chem ; 286(51): 43816-43829, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21998300

RESUMO

Most studies on heat shock protein 90 (Hsp90) have focused on the involvement of Hsp90 in the interphase, whereas the role of this protein in the nucleus during mitosis remains largely unclear. In this study, we found that the level of the acetylated form of Hsp90 decreased dramatically during mitosis, which indicates more chaperone activity during mitosis. We thus probed proteins that interacted with Hsp90 by liquid chromatography/mass spectrometry (LC/MS) and found that nucleolin was one of those interacting proteins during mitosis. The nucleolin level decreased upon geldanamycin treatment, and Hsp90 maintained the cyclin-dependent kinase 1 (CDK1) activity to phosphorylate nucleolin at Thr-641/707. Mutation of Thr-641/707 resulted in the destabilization of nucleolin in mitosis. We globally screened the level of mitotic mRNAs and found that 229 mRNAs decreased during mitosis in the presence of geldanamycin. Furthermore, a bioinformatics tool and an RNA immunoprecipitation assay found that 16 mRNAs, including cadherin and Bcl-xl, were stabilized through the recruitment of nucleolin to the 3'-untranslated regions (3'-UTRs) of those genes. Overall, strong correlations exist between the up-regulation of Hsp90, nucleolin, and the mRNAs related to tumorigenesis of the lung. Our findings thus indicate that nucleolin stabilized by Hsp90 contributes to the lung tumorigenesis by increasing the level of many tumor-related mRNAs during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Antibióticos Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Núcleo Celular/metabolismo , Cromatografia Líquida/métodos , Células HeLa , Humanos , Imunoprecipitação , Lactamas Macrocíclicas/farmacologia , Espectrometria de Massas/métodos , Mitose , Fosfoproteínas/química , Conformação Proteica , RNA/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Espectrometria de Massas em Tandem/métodos , Nucleolina
16.
J Biomed Sci ; 19: 94, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23148884

RESUMO

Specific protein 1 (Sp1), the first transcription factor to be isolated, regulates the expression of numerous genes involved in cell proliferation, apoptosis, and differentiation. Recent studies found that an increase in Sp1 transcriptional activity is associated with the tumorigenesis. Moreover, post-translational modifications of Sp1, including glycosylation, phosphorylation, acetylation, sumoylation, ubiquitination, and methylation, regulate Sp1 transcriptional activity and modulate target gene expression by affecting its DNA binding activity, transactivation activity, or protein level. In addition, recent studies have investigated several compounds with anti-cancer activity that could inhibit Sp1 transcriptional activity. In this review, we describe the effect of various post-translational modifications on Sp1 transcriptional activity and discuss compounds that inhibit the activity of Sp1.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica , Imunoglobulinas , Processamento de Proteína Pós-Traducional/genética , Apoptose/genética , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Transcrição Gênica
17.
Oncogenesis ; 11(1): 25, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589688

RESUMO

Previous studies indicate that estrogen positively regulates lung cancer progression. Understanding the reasons will be beneficial for treating women with lung cancer in the future. In this study, we found that tumor formation was more significant in female EGFRL858R mice than in male mice. P53 expression levels were downregulated in the estradiol (E2)-treated lung cancer cells, female mice with EGFRL858R-induced lung cancer mice, and premenopausal women with lung cancer. E2 increased DNA methyltransferase 1 (DNMT1) expression to enhance methylation in the TP53 promoter, which led to the downregulation of p53. Overexpression of GFP-p53 decreased DNMT1 expression in lung cancer cells. TP53 knockout in mice with EGFRL858R-induced lung cancer not only changed gene expression in cancer cells but also increased the polarization of M2 macrophages by increasing C-C motif chemokine ligand 5 (CCL5) expression and decreasing growth differentiation factor 15 (GDF15) expression. The TP53 mutation rate was increased in females with late-stage but not early-stage lung cancer compared to males with lung cancer. In conclusion, E2-induced DNMT1 and p53 expression were negatively regulated each other in females with lung cancer, which not only affected cancer cells but also modulated the tumor-associated microenvironment, ultimately leading to a poor prognosis.

18.
Biochem Biophys Res Commun ; 407(3): 587-92, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21420382

RESUMO

Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.


Assuntos
Senescência Celular , Histona Desacetilase 1/biossíntese , Proteína Fosfatase 2/metabolismo , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição Sp1/metabolismo , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/patologia , Animais , Feminino , Células HeLa , Humanos , Camundongos , Camundongos SCID , Regiões Promotoras Genéticas , Proteína Fosfatase 2/genética , Ativação Transcricional
19.
Cell Death Differ ; 28(9): 2690-2707, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33846536

RESUMO

Drug resistance has remained an important issue in the treatment and prevention of various diseases, including cancer. Herein, we found that USP24 not only repressed DNA-damage repair (DDR) activity by decreasing Rad51 expression to cause the tumor genomic instability and cancer stemness, but also increased the levels of the ATP-binding cassette (ABC) transporters P-gp, ABCG2, and ezrin to enhance the pumping out of Taxol from cancer cells, thus resulted in drug resistance during cancer therapy. A novel USP24 inhibitor, NCI677397, was screened for specific inhibiting the catalytic activity of USP24. This inhibitor was identified to suppress drug resistance via decreasing genomic instability, cancer stemness, and the pumping out of drugs from cancer cells. Understanding the role and molecular mechanisms of USP24 in drug resistance will be beneficial for the future development of a novel USP24 inhibitor. Our studies provide a new insight of USP24 inhibitor for clinically implication of blocking drug resistance during chemotherapy.


Assuntos
Desenvolvimento de Medicamentos/métodos , Neoplasias/terapia , Ubiquitina Tiolesterase/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Camundongos SCID , Transfecção
20.
J Cell Biochem ; 110(6): 1430-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20506344

RESUMO

Cyclooxygenase 2 (COX-2) is an important inflammatory factor. Previous studies have indicated that COX-2 is induced with lipopolysaccharide (LPS) treatment. Here, we found that an inhibitor of histone deacetylase (HDAC), trichostatin A (TSA), cannot repress LPS-induced COX-2 but it increased the COX-2 level in RAW264.7 cells. We found no significant difference in NF-kappaB activation and ERK1/2 phosphorylation, but LPS-induced C/EBP delta expression was completely abolished after TSA treatment of LPS-treated cells. Interesting, reporter assay of C/EBP delta promoter revealed that Sp1-binding site is important. Although there was no alteration in c-Jun levels, but the phosphorylation of c-Jun at its C-terminus was increased dramatically. A DNA-associated protein assay (DAPA) and chromatin immunoprecipitation assay (ChIP) indicated that c-Jun was recruited via Sp1 to the promoter of C/EBP delta after LPS treatment; this recruitment of c-Jun was repressed by TSA. C/EBP delta inhibition by TSA resulted in increased binding of C/EBP alpha and C/EBP beta to the COX-2 promoter. Therefore, TSA has a positive effect on LPS-induced COX-2 since it decreases the C/EBP delta level by reducing c-Jun recruitment by Sp1 to the C/EBP delta promoter, resulting in increased the recruitment of C/EBP alpha and C/EBP beta to the COX-2 promoter.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácidos Hidroxâmicos/farmacologia , Lipopolissacarídeos/farmacologia , Animais , Western Blotting , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Linhagem Celular , Ciclo-Oxigenase 2/genética , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA