Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurooncol ; 147(2): 309-315, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32056145

RESUMO

INTRODUCTION: Medulloblastoma is a malignant embryonal tumor of the cerebellum that occurs predominantly in children. To find germline genetic variants associated with medulloblastoma risk, we conducted a genome-wide association study (GWAS) including 244 medulloblastoma cases and 247 control subjects from Sweden and Denmark. METHODS: Genotyping was performed using Illumina BeadChips, and untyped variants were imputed using IMPUTE2. RESULTS: Fifty-nine variants in 11 loci were associated with increased medulloblastoma risk (p < 1 × 10-5), but none were statistically significant after adjusting for multiple testing (p < 5 × 10-8). Thirteen of these variants were genotyped, whereas 46 were imputed. Genotyped variants were further investigated in a validation study comprising 249 medulloblastoma cases and 629 control subjects. In the validation study, rs78021424 (18p11.23, PTPRM) was associated with medulloblastoma risk with OR in the same direction as in the discovery cohort (ORT = 1.59, pvalidation = 0.02). We also selected seven medulloblastoma predisposition genes for investigation using a candidate gene approach: APC, BRCA2, PALB2, PTCH1, SUFU, TP53, and GPR161. The strongest evidence for association was found for rs201458864 (PALB2, ORT = 3.76, p = 3.2 × 10-4) and rs79036813 (PTCH1, ORA = 0.42, p = 2.6 × 10-3). CONCLUSION: The results of this study, including a novel potential medulloblastoma risk loci at 18p11.23, are suggestive but need further validation in independent cohorts.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Cerebelares/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Meduloblastoma/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Neoplasias Cerebelares/patologia , Estudos de Coortes , Genótipo , Humanos , Meduloblastoma/patologia , Prognóstico
2.
Oncoimmunology ; 10(1): 1838140, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33489468

RESUMO

Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and established murine neuroblastoma models. We also sought to understand the role of the tumor microenvironment (TME) and PD-L1 expression and their alteration post-chemotherapy in our models and human tissues. PD-L1 expression was enriched in human tumor-associated macrophages and up-regulated after chemotherapy. In a murine minimal disease model, single and dual immune checkpoint blockade promoted tumor rejection, improved survival, and established immune memory with long-term anti-tumor immunity against re-challenge. In an established tumor model, only dual immune checkpoint blockade showed efficacy. Interestingly, dual immune checkpoint therapy distinctly influenced adaptive and innate immune responses, with significant increase in CD8+CD28+PD-1+ T cells and inflammatory macrophages (CD11bhiCD11c-F4/80+Ly6Chi) in tumor-draining lymph nodes. Adding chemotherapy before immunotherapy provided significant survival benefit for mice with established tumors receiving anti-PD-1 or dual immune checkpoint blockade. Our findings demonstrate anti-PD-1 and anti-CTLA-4 therapy induces a novel subset of effector T cells, and support administration of induction chemotherapy immediately prior to immune checkpoint blockade in children with high-risk neuroblastoma.


Assuntos
Neuroblastoma , Receptor de Morte Celular Programada 1 , Animais , Antígenos CD28 , Linfócitos T CD8-Positivos , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , Neuroblastoma/tratamento farmacológico , Linfócitos T , Microambiente Tumoral
3.
Oncotarget ; 8(53): 91516-91529, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207662

RESUMO

Tumor-associated macrophages (TAMs) are strongly associated with poor survival in neuroblastomas that lack MYCN amplification. To study TAM action in neuroblastomas, we used a novel murine model of spontaneous neuroblastoma lacking MYCN amplification, and observed recruitment and polarization of TAMs, which in turn enhanced neuroblastoma proliferation and growth. In both murine and human neuroblastoma cells, we found that TAMs increased STAT3 activation in neuroblastoma cells and transcriptionally up-regulated the MYC oncogene. Analysis of human neuroblastoma tumor specimens revealed that MYC up-regulation correlates with markers of TAM infiltration. In an IL6ko neuroblastoma model, the absence of IL-6 protein had no effect on tumor development and prevented neither STAT3 activation nor MYC up-regulation. In contrast, inhibition of JAK-STAT activation using AZD1480 or the clinically admissible inhibitor ruxolitinib significantly reduced TAM-mediated growth of neuroblastomas implanted subcutaneously in NOD scid gamma mice. Our results point to a unique mechanism in which TAMs promote tumor cells that lack amplification of an oncogene common to the malignancy by up-regulating transcriptional expression of a distinct oncogene from the same gene family, and underscore the role of IL-6-independent activation of STAT3 in this mechanism. Amplification of MYCN or constitutive up-regulation of MYC protein is observed in approximately half of high-risk tumors; our findings indicate a novel role of TAMs as inducers of MYC expression in neuroblastomas lacking independent oncogene activation.

4.
Neuro Oncol ; 18(1): 126-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26254476

RESUMO

BACKGROUND: Medulloblastomas in children can be categorized into 4 molecular subgroups with differing clinical characteristics, such that subgroup determination aids in prognostication and risk-adaptive treatment strategies. Magnetic resonance spectroscopy (MRS) is a widely available, noninvasive tool that is used to determine the metabolic characteristics of tumors and provide diagnostic information without the need for tumor tissue. In this study, we investigated the hypothesis that metabolite concentrations measured by MRS would differ between molecular subgroups of medulloblastoma and allow accurate subgroup determination. METHODS: MRS was used to measure metabolites in medulloblastomas across molecular subgroups (SHH = 12, Groups 3/4 = 17, WNT = 1). Levels of 14 metabolites were analyzed to determine those that were the most discriminant for medulloblastoma subgroups in order to construct a multivariable classifier for distinguishing between combined Group 3/4 and SHH tumors. RESULTS: Medulloblastomas across molecular subgroups revealed distinct spectral features. Group 3 and Group 4 tumors demonstrated metabolic profiles with readily detectable taurine, lower levels of lipids, and high levels of creatine. SHH tumors showed prominent choline and lipid with low levels of creatine and little or no evidence of taurine. A 5-metabolite subgroup classifier inclusive of creatine, myo-inositol, taurine, aspartate, and lipid 13a was developed that could discriminate between Group 3/4 and SHH medulloblastomas with excellent accuracy (cross-validated area under the curve [AUC] = 0.88). CONCLUSIONS: The data show that medulloblastomas of Group 3/4 differ metabolically as measured using MRS when compared with SHH molecular subgroups. MRS is a useful and accurate tool to determine medulloblastoma molecular subgroups.


Assuntos
Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/patologia , Espectroscopia de Ressonância Magnética , Meduloblastoma/diagnóstico , Meduloblastoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Meduloblastoma/classificação , Meduloblastoma/metabolismo
5.
Clin Cancer Res ; 21(6): 1457-65, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25344580

RESUMO

PURPOSE: Medulloblastoma in children can be categorized into at least four molecular subgroups, offering the potential for targeted therapeutic approaches to reduce treatment-related morbidities. Little is known about the role of tumor microenvironment in medulloblastoma or its contribution to these molecular subgroups. Tumor microenvironment has been shown to be an important source for therapeutic targets in both adult and pediatric neoplasms. In this study, we investigated the hypothesis that expression of genes related to tumor-associated macrophages (TAM) correlates with the medulloblastoma molecular subgroups and contributes to a diagnostic signature. METHODS: Gene-expression profiling using human exon array (n = 168) was analyzed to identify medulloblastoma molecular subgroups and expression of inflammation-related genes. Expression of 45 tumor-related and inflammation-related genes was analyzed in 83 medulloblastoma samples to build a gene signature predictive of molecular subgroups. TAMs in medulloblastomas (n = 54) comprising the four molecular subgroups were assessed by immunohistochemistry (IHC). RESULTS: A 31-gene medulloblastoma subgroup classification score inclusive of TAM-related genes (CD163 and CSF1R) was developed with a misclassification rate of 2%. Tumors in the Sonic Hedgehog (SHH) subgroup had increased expression of inflammation-related genes and significantly higher infiltration of TAMs than tumors in the Group 3 or Group 4 subgroups (P < 0.0001 and P < 0.0001, respectively). IHC data revealed a strong association between location of TAMs and proliferating tumor cells. CONCLUSIONS: These data show that SHH tumors have a unique tumor microenvironment among medulloblastoma subgroups. The interactions of TAMs and SHH medulloblastoma cells may contribute to tumor growth revealing TAMs as a potential therapeutic target.


Assuntos
Neoplasias Cerebelares/imunologia , Proteínas Hedgehog/metabolismo , Macrófagos/imunologia , Meduloblastoma/imunologia , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/imunologia , Masculino , Meduloblastoma/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA