Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Appl Environ Microbiol ; 90(6): e0072424, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38771053

RESUMO

The central carbon (C) metabolic network is responsible for most of the production of energy and biosynthesis in microorganisms and is therefore key to a mechanistic understanding of microbial life in soil communities. Many upland soil communities have shown a relatively high C flux through the pentose phosphate (PP) or the Entner-Doudoroff (ED) pathway, thought to be related to oxidative damage control. We tested the hypothesis that the metabolic organization of the central C metabolic network differed between two ecosystems, an anoxic marsh soil and oxic upland soil, and would be affected by altering oxygen concentrations. We expected there to be high PP/ED pathway activity under high oxygen concentrations and in oxic soils and low PP/ED activity in reduced oxygen concentrations and in marsh soil. Although we found high PP/ED activity in the upland soil and low activity in the marsh soil, lowering the oxygen concentration for the upland soil did not reduce the relative PP/ED pathway activity as hypothesized, nor did increasing the oxygen concentration in the marsh soil increase the PP/ED pathway activity. We speculate that the high PP/ED activity in the upland soil, even when exposed to low oxygen concentrations, was related to a high demand for NADPH for biosynthesis, thus reflecting higher microbial growth rates in C-rich soils than in C-poor sediments. Further studies are needed to explain the observed metabolic diversity among soil ecosystems and determine whether it is related to microbial growth rates.IMPORTANCEWe observed that the organization of the central carbon (C) metabolic processes differed between oxic and anoxic soil. However, we also found that the pentose phosphate pathway/Entner-Doudoroff (PP/ED) pathway activity remained high after reducing the oxygen concentration for the upland soil and did not increase in response to an increase in oxygen concentration in the marsh soil. These observations contradicted the hypothesis that oxidative stress is a main driver for high PP/ED activity in soil communities. We suggest that the high PP/ED activity and NADPH production reflect higher anabolic activities and growth rates in the upland soil compared to the anaerobic marsh soil. A greater understanding of the molecular and biochemical processes in soil communities is needed to develop a mechanistic perspective on microbial activities and their relationship to soil C and nutrient cycling. Such an increased mechanistic perspective is ecologically relevant, given that the central carbon metabolic network is intimately tied to the energy metabolism of microbes, the efficiency of new microbial biomass production, and soil organic matter formation.


Assuntos
Carbono , Microbiologia do Solo , Áreas Alagadas , Carbono/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Solo/química , Traqueófitas/metabolismo , Traqueófitas/microbiologia , Traqueófitas/crescimento & desenvolvimento , Oxigênio/metabolismo , Anaerobiose , Via de Pentose Fosfato , Água Doce/microbiologia , Ecossistema
3.
Appl Environ Microbiol ; 90(7): e0080024, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920364

RESUMO

Protists are a diverse and understudied group of microbial eukaryotic organisms especially in terrestrial environments. Advances in molecular methods are increasing our understanding of the distribution and functions of these creatures; however, there is a vast array of choices researchers make including barcoding genes, primer pairs, PCR settings, and bioinformatic options that can impact the outcome of protist community surveys. Here, we tested four commonly used primer pairs targeting the V4 and V9 regions of the 18S rRNA gene using different PCR annealing temperatures and processed the sequences with different bioinformatic parameters in 10 diverse soils to evaluate how primer pair, amplification parameters, and bioinformatic choices influence the composition and richness of protist and non-protist taxa using Illumina sequencing. Our results showed that annealing temperature influenced sequencing depth and protist taxon richness for most primer pairs, and that merging forward and reverse sequencing reads for the V4 primer pairs dramatically reduced the number of sequences and taxon richness of protists. The data sets of primers that targeted the same 18S rRNA gene region (e.g., V4 or V9) had similar protist community compositions; however, data sets from primers targeting the V4 18S rRNA gene region detected a greater number of protist taxa compared to those prepared with primers targeting the V9 18S rRNA region. There was limited overlap of protist taxa between data sets targeting the two different gene regions (80/549 taxa). Together, we show that laboratory and bioinformatic choices can substantially affect the results and conclusions about protist diversity and community composition using metabarcoding.IMPORTANCEEcosystem functioning is driven by the activity and interactions of the microbial community, in both aquatic and terrestrial environments. Protists are a group of highly diverse, mostly unicellular microbes whose identity and roles in terrestrial ecosystem ecology have been largely ignored until recently. This study highlights the importance of choices researchers make, such as primer pair, on the results and conclusions about protist diversity and community composition in soils. In order to better understand the roles protist taxa play in terrestrial ecosystems, biases in methodological and analytical choices should be understood and acknowledged.


Assuntos
Biologia Computacional , Primers do DNA , Eucariotos , RNA Ribossômico 18S , Microbiologia do Solo , RNA Ribossômico 18S/genética , Biologia Computacional/métodos , Eucariotos/genética , Eucariotos/classificação , Primers do DNA/genética , Biodiversidade , Temperatura , Solo/parasitologia , Solo/química , Reação em Cadeia da Polimerase
4.
Front Ecol Environ ; 21(9): 428-434, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38464945

RESUMO

Antibiotic resistance is one of the greatest public health challenges of our time. International efforts to curb resistance have largely focused on drug development and limiting unnecessary antibiotic use. However, in areas where water, sanitation, and hygiene infrastructure is lacking, we propose that bacterial flow between humans and animals can exacerbate the emergence and spread of resistant pathogens. Here, we describe the consequences of poor environmental controls by comparing mobile resistance elements among Escherichia coli recovered from humans and meat in Cambodia, a middle-income country with substantial human-animal connectivity and unregulated antibiotic use. We identified identical mobile resistance elements and a conserved transposon region that were widely dispersed in both humans and animals, a phenomenon rarely observed in high-income settings. Our findings indicate that plugging leaks at human-animal interfaces should be a critical part of addressing antibiotic resistance in low- and especially middle-income countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA