Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 133(7): 2183-2195, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32281004

RESUMO

KEY MESSAGE: Heterogeneous Lr34 genes for leaf rust in winter wheat cultivar 'Duster' and KASP markers for allelic variation in exon 11 and exon 22 of Lr34. Wheat, Triticum aestivum (2n = 6x = 42, AABBDD), is a hexaploid species, and each of three homoeologous genomes A, B, and D should have one copy for a gene in its ancestral form if the gene has no duplication. Previously reported leaf rust resistance gene Lr34 has one copy on the short arm of chromosome 7D in hexaploid wheat, and allelic variation in Lr34 is in intron 4, exon 11, exon 12, or exon 22. In this study, we discovered that Oklahoma hard red winter wheat cultivar 'Duster' (PI 644,016) has two copies of the Lr34 gene, the resistance allele Lr34a and the susceptibility allele Lr34b. Both Lr34a and Lr34b were mapped in the same linkage group on chromosome 7D in a doubled-haploid population generated from a cross between Duster and a winter wheat cultivar 'Billings' which carries the susceptibility allele Lr34c. A chromosomal fragment including Lr34 and at least two neighboring genes on its proximal side but excluding genes on its distal side was duplicated in Duster. The Duster Lr34ab allele was associated with tip necrosis and increased resistance against leaf rust at adult plants in the Duster × Billings DH population tested in the field, demonstrating the function of the Duster Lr34ab allele in wheat. We have developed KASP markers for allelic variation in exon 11 and exon 22 of Lr34 in wheat. These markers can be utilized to accelerate the selection of Lr34 in wheat.


Assuntos
Alelos , Basidiomycota/patogenicidade , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Resistência à Doença/genética , Éxons , Genes de Plantas , Ligação Genética , Variação Genética , Genótipo , Haploidia , Íntrons , Necrose , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Locos de Características Quantitativas
2.
Phytopathology ; 101(11): 1322-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999158

RESUMO

Soilborne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter wheat breeding programs. Virus symptoms were evaluated twice in virus-infected fields for the panel at Manhattan, KS in spring 2010 and 2011 and for a subpanel of 137 hard winter wheat accessions at Stillwater, OK in spring 2008. At the two locations, 69.8 and 79.5% of cultivars were resistant or moderately resistant to the disease, respectively. After 282 simple-sequence repeat markers covering all wheat chromosome arms were scanned for association in the panel, marker Xgwm469 on the long arm of chromosome 5D (5DL) showed a significant association with the disease rating. Three alleles (Xgwm469-165bp, -167bp, and -169bp) were associated with resistance and the null allele was associated with susceptibility. Correlations between the marker and the disease rating were highly significant (0.80 in Manhattan at P < 0.0001 and 0.63 in Stillwater at P < 0.0001). The alleles Xgwm469-165bp and Xgwm469-169bp were present mainly in the hard winter wheat group, whereas allele Xgwm469-167bp was predominant in the soft winter wheat. The 169 bp allele can be traced back to 'Newton', and the 165 bp allele to Aegilops tauschii. In addition, a novel locus on the short arm of chromosome 4D (4DS) was also identified to associate with the disease rating. Marker Xgwm469-5DL is closely linked to SBWMV resistance and highly polymorphic across the winter wheat accessions sampled in the study and, thus, should be useful in marker-assisted selection in U.S. winter wheat.


Assuntos
Estudos de Associação Genética/métodos , Vírus do Mosaico/fisiologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Frequência do Gene , Marcadores Genéticos/genética , Genética Populacional , Interações Hospedeiro-Patógeno , Repetições de Microssatélites/genética , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Polimorfismo Genético/genética , Triticum/imunologia , Triticum/virologia
3.
Plant Pathol J ; 37(4): 339-346, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34365745

RESUMO

Prevalence of tan spot of wheat caused by the fungus Pyrenophora tritici-repentis has become more prevalent in Oklahoma as no-till cultivation in wheat has increased. Hence, developing wheat varieties resistant to tan spot has been emphasized, and selecting pathogen isolates to screen for resistance to this disease is critical. Twelve isolates of P. tritici-repentis were used to inoculate 11 wheat cultivars in a greenhouse study in splitplot experiments. Virulence of isolates and cultivar resistance were measured in percent leaf area infection for all possible isolate x cultivar interactions. Isolates differed significantly (P < 0.01) in virulence on wheat cultivars, and cultivars differed significantly in disease reaction to isolates. Increased virulence of isolates detected increased variability in cultivar response (percent leaf area infection) (r = 0.56, P < 0.05) while increased susceptibility in cultivars detected increased variance in virulence of the isolates (r = 0.76, P < 0.01). A significant isolate × cultivar interaction indicated specificity between isolates and cultivars, however, cluster analysis indicated low to moderate physiological specialization. Similarity in wheat cultivars in response to pathogen isolates also was determined by cluster analysis. The use of diverse isolates of the fungus would facilitate evaluation of resistance in wheat cultivars to tan spot.

4.
Theor Appl Genet ; 121(2): 385-92, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20352181

RESUMO

Leaf rust, caused by Puccinia triticina Eriks, is one of the most common and persistent wheat diseases in the US Great Plains. We report that the Lr34 gene was mapped in the center of a QTL for leaf rust reaction and explained 18-35% of the total phenotypic variation in disease severity of adult plants in a Jagger x 2174 population of recombinant inbred lines (RILs) field-tested for 3 years. The sequence of the complete Lr34 gene was determined for the susceptible Jagger allele and for the resistant 2174 allele. The two alleles had exactly the same sequence as the resistant allele reported previously in Chinese Spring at three polymorphic sites in intron 4, exon 11, and exon 12. A G/T polymorphism was found in exon 22, where a premature stop codon was found in the susceptible Jagger allele (Lr34E22s), confirming a previous report, due to a point mutation compared with the resistant 2174 allele (Lr34E22r). We have experimentally demonstrated a tight association between the point mutation at exon 22 of Lr34 and leaf rust susceptibility in a segregating biparental population. A PCR marker was developed to distinguish between the Lr34E22r and Lr34E22s alleles. A survey of 33 local hard winter wheat cultivars indicated that 7 cultivars carry the Lr34E22s allele and 26 cultivars carry the Lr34E22r allele. This study significantly improves our genetic understanding of allelic variation in the Lr34 gene and provides a functional molecular tool to improve leaf rust resistance in a major US wheat gene pool.


Assuntos
Genes de Plantas , Imunidade Inata/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Alelos , Sequência de Bases , Basidiomycota/genética , Basidiomycota/imunologia , Mapeamento Cromossômico , DNA de Plantas/genética , Dados de Sequência Molecular , Fenótipo , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Mutação Puntual/genética , Locos de Características Quantitativas , Homologia de Sequência do Ácido Nucleico , Triticum/imunologia , Triticum/microbiologia
5.
PLoS One ; 12(1): e0171149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28135317

RESUMO

Lr34 in wheat is a non-race-specific gene that confers resistance against multiple fungal pathogens. The resistant allele Lr34 and the susceptible allele Lr34s can be distinguished by three polymorphisms that cause alternation of deduced amino acid sequences of Lr34 at the protein level. In seedlings of a cultivar carrying the resistant Lr34r allele, only a portion (35%) of its transcripts was correctly spliced and the majority (65%) of its transcripts were incorrectly spliced due to multiple mis-splicing events. Lr34 mis-splicing events were also observed at adult plant age when this gene exerts its function. All of the mis-spliced Lr34r cDNA transcripts observed in this study resulted in a premature stop codon due to a shift of the open reading frame; hence, the mis-spliced Lr34r cDNAs were deduced to encode incomplete proteins. Even if a cultivar has a functional Lr34 gene, its transcripts might not completely splice in a correct pattern. These findings suggested that the partial resistance conferred by a quantitative gene might be due to mis-splicing events in its transcripts; hence, the resistance of the gene could be increased by eliminating or mutating regulators that cause mis-splicing events in wheat.


Assuntos
Genes de Plantas , Splicing de RNA/genética , Estações do Ano , Triticum/genética , DNA Complementar/genética , Meio Ambiente , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/genética
6.
Phytopathology ; 92(4): 347-54, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18942947

RESUMO

ABSTRACT Soilborne wheat mosaic virus (SBWMV) is an agronomically important pathogen of wheat that is transmitted by the soilborne plasmodiophorid vector Polymyxa graminis. In the laboratory, attempts to generate SBWMV-infected plants are often hampered by poor infectivity of the virus. To analyze the mechanism for virus resistance in wheat cultivars, we developed novel inoculation techniques. A new technique for foliar inoculation of SBWMV was developed that eliminated wound-induced necrosis normally associated with rub inoculating virus to wheat leaves. This new technique is important because we can now uniformly inoculate plants in the laboratory for studies of host resistance mechanisms in the inoculated leaf. Additionally, wheat plants were grown hydroponically in seed germination pouches and their roots were inoculated with SBWMV either by placing P. graminis-infested root material in the pouch or by mechanically inoculating the roots with purified virus. The susceptibility of one SBWMV susceptible and three field resistant wheat cultivars were analyzed following inoculation of plants using these novel inoculation techniques or the conventional inoculation technique of growing plants in P. graminis-infested soil. The results presented in this study suggest that virus resistance in wheat likely functions in the roots to block virus infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA