Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 8(10): 2004705, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026461

RESUMO

Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin-like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue-derived, epithelial-only intestinal organoids. HELP enables the encapsulation of dissociated patient-derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal-derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin-ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid-matrix interactions and potential patient-specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G' ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10-3-1 × 10-3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal-derived products or synthetic polyethylene glycol for potential clinical translation.


Assuntos
Células Epiteliais/citologia , Mucosa Intestinal/citologia , Organoides/citologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Elastina/química , Células Epiteliais/metabolismo , Matriz Extracelular/química , Humanos , Ácido Hialurônico/química , Mucosa Intestinal/metabolismo , Camundongos , Organoides/metabolismo
2.
Biomaterials ; 129: 152-162, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342321

RESUMO

The Caco-2 assay has achieved wide popularity among pharmaceutical companies in the past two decades as an in vitro method for estimation of in vivo oral bioavailability of pharmaceutical compounds during preclinical characterization. Despite its popularity, this assay suffers from a severe underprediction of the transport of drugs which are absorbed paracellularly, that is, which pass through the cell-cell tight junctions of the absorptive cells of the small intestine. Here, we propose that simply replacing the collagen I matrix employed in the standard Caco-2 assay with an engineered matrix, we can control cell morphology and hence regulate the cell-cell junctions that dictate paracellular transport. Specifically, we use a biomimetic engineered extracellular matrix (eECM) that contains modular protein domains derived from two ECM proteins found in the small intestine, fibronectin and elastin. This eECM allows us to independently tune the density of cell-adhesive RGD ligands presented to Caco-2 cells as well as the mechanical stiffness of the eECM. We observe that lower amounts of RGD ligand presentation as well as decreased matrix stiffness results in Caco-2 morphologies that more closely resemble primary small intestinal epithelial cells than Caco-2 cells cultured on collagen. Additionally, these matrices result in Caco-2 monolayers with decreased recruitment of actin to the apical junctional complex and increased expression of claudin-2, a tight junction protein associated with higher paracellular permeability that is highly expressed throughout the small intestine. Consistent with these morphological differences, drugs known to be paracellularly transported in vivo exhibited significantly improved transport rates in this modified Caco-2 model. As expected, permeability of transcellularly transported drugs remained unaffected. Thus, we have demonstrated a method of improving the physiological accuracy of the Caco-2 assay that could be readily adopted by pharmaceutical companies without major changes to their current testing protocols.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Engenharia de Proteínas , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Células CACO-2 , Permeabilidade da Membrana Celular , Claudina-2/metabolismo , Matriz Extracelular/metabolismo , Humanos , Junções Intercelulares/metabolismo , Domínios Proteicos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA