Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(6): e13999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37096305

RESUMO

3D printing in medical physics provides opportunities for creating patient-specific treatment devices and in-house fabrication of imaging/dosimetry phantoms. This study characterizes several commercial fused deposition 3D printing materials with some containing nonstandard compositions. It is important to explore their similarities to human tissues and other materials encountered in patients. Uniform cylinders with infill from 50 to 100% at six evenly distributed intervals were printed using 13 different filaments. A novel approach rotating infill angle 10o between each layer avoids unwanted patterns. Five materials contained high-Z/metallic components. A clinical CT scanner with a range of tube potentials (70, 80, 100, 120, 140 kVp) was used. Density and average Hounsfield unit (HU) were measured. A commercial GAMMEX phantom mimicking various human tissues provides a comparison. Utility of the lookup tables produced is demonstrated. A methodology for calibrating print materials/parameters for a desired HU is presented. Density and HU were determined for all materials as a function of tube voltage (kVp) and infill percentage. The range of HU (-732.0-10047.4 HU) and physical densities (0.36-3.52 g/cm3 ) encompassed most tissues/materials encountered in radiology/radiotherapy applications with many overlapping those of human tissues. Printing filaments doped with high-Z materials demonstrated increased attenuation due to the photoelectric effect with decreased kVp, as found in certain endogenous materials (e.g., bone). HU was faithfully reproduced (within one standard deviation) in a 3D-printed mimic of a commercial anthropomorphic phantom section. Characterization of commercially available 3D print materials facilitates custom object fabrication for use in radiology and radiation oncology, including human tissue and common exogenous implant mimics. This allows for cost reduction and increased flexibility to fabricate novel phantoms or patient-specific devices imaging and dosimetry purposes. A formalism for calibrating to specific CT scanner, printer, and filament type/batch is presented. Utility is demonstrated by printing a commercial anthropomorphic phantom copy.


Assuntos
Radioterapia (Especialidade) , Humanos , Tomografia Computadorizada por Raios X/métodos , Radiografia , Impressão Tridimensional , Radiometria , Imagens de Fantasmas
2.
Gynecol Oncol ; 156(2): 349-356, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31771865

RESUMO

INTRODUCTION: To evaluate clinical outcomes, pattern of failure, and toxicity after high-dose intensity-modulated radiation therapy (IMRT) for advanced vulvar cancer. METHODS: In this IRB approved retrospective study, the charts of women with histologically confirmed, non-metastatic vulvar cancer consecutively treated at our institution from 2012 to 2018 were reviewed to identify patients that received high-dose IMRT with curative intent. The treatment compliance, toxicities, and patterns of failure were investigated. Actuarial local, regional and distant recurrence and survival were estimated using Kaplan-Meier method and compared using log rank test. RESULTS: Twenty-six patients were identified, 23 were unresectable, and 3 refused surgery. Fifteen patients (58%) had inguinal node metastases; 10(38%) had pelvic node metastases. Elective surgical staging of groins was performed in 9-patients. Median tumor dose was 65.4Gy. Concurrent platinum-based chemotherapy was administered in 22(84.6%) patients. Complete response (CR) was achieved in 21/26 (80.7%) patients. Five patients had persistent disease following treatment and one sustained recurrence 5-months following radiotherapy. All persistent or recurrent disease occurred inside the irradiated volume. Median follow-up was 19 months (3-52 months). Actuarial 1-year local, regional and distant controls were 72.4%, 85.4%, and 86%, respectively. One and 2-year overall survivals were 91% and 62%, respectively. Complete response at 3-months was a strong predictor for overall survival (1-yr OS 73% vs 27%, HR 7.1 (95% CI 1.2-44); p = 0.01). Lymph node metastases adversely affected overall survival (2-yr OS 49% vs. 83%, p = 0.09). Grade 3-4 late urinary and soft-tissue toxicity was seen in 5 patients. Tumor doses >66 Gy (p = 0.03) and prior pelvic radiotherapy (p = 0.002) predicted grade 3-4 toxicity. CONCLUSION: High-dose IMRT for vulvar cancer achieves high rates of local control with acceptable dose dependent long-term toxicity.


Assuntos
Carboplatina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Cisplatino/uso terapêutico , Neoplasias Vulvares/tratamento farmacológico , Neoplasias Vulvares/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Carboplatina/efeitos adversos , Carcinoma de Células Escamosas/diagnóstico por imagem , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Cisplatino/efeitos adversos , Estudos de Coortes , Relação Dose-Resposta à Radiação , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Radiossensibilizantes/efeitos adversos , Radiossensibilizantes/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias Vulvares/diagnóstico por imagem
3.
J Appl Clin Med Phys ; 19(4): 125-133, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882231

RESUMO

The AAPM TG 132 Report enumerates important steps for validation of the medical image registration process. While the Report outlines the general goals and criteria for the tests, specific implementation may be obscure to the wider clinical audience. We endeavored to provide a detailed step-by-step description of the quantitative tests' execution, applied as an example to a commercial software package (Mirada Medical, Oxford, UK), while striving for simplicity and utilization of readily available software. We demonstrated how the rigid registration data could be easily extracted from the DICOM registration object and used, following some simple matrix math, to quantify accuracy of rigid translations and rotations. The options for validating deformable image registration (DIR) were enumerated, and it was shown that the most practically viable ones are comparison of propagated internal landmark points on the published datasets, or of segmented contours that can be generated locally. The multimodal rigid registration in our example did not always result in the desired registration error below ½ voxel size, but was considered acceptable with the maximum errors under 1.3 mm and 1°. The DIR target registration errors in the thorax based on internal landmarks were far in excess of the Report recommendations of 2 mm average and 5 mm maximum. On the other hand, evaluation of the DIR major organs' contours propagation demonstrated good agreement for lung and abdomen (Dice Similarity Coefficients, DSC, averaged over all cases and structures of 0.92 ± 0.05 and 0.91 ± 0.06, respectively), and fair agreement for Head and Neck (average DSC = 0.73 ± 0.14). The average for head and neck is reduced by small volume structures such as pharyngeal constrictor muscles. Even these relatively simple tests show that commercial registration algorithms cannot be automatically assumed sufficiently accurate for all applications. Formalized task-specific accuracy quantification should be expected from the vendors.


Assuntos
Processamento de Imagem Assistida por Computador , Algoritmos , Cabeça , Imagem Multimodal , Pescoço , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
4.
J Appl Clin Med Phys ; 18(3): 73-82, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371377

RESUMO

A superposition/convolution GPU-accelerated dose computation algorithm (the Calculator) has been recently incorporated into commercial software. The algorithm requires validation prior to clinical use. Three photon energies were examined: conventional 6 MV and 15 MV, and 10 MV flattening filter free (10 MVFFF). For a set of IMRT and VMAT plans based on four of the five AAPM Practice Guideline 5a downloadable datasets, ion chamber (IC) measurements were performed on the water-equivalent phantoms. The average difference between the Calculator and IC was -0.3 ± 0.8% (1SD). The same plans were projected on a phantom containing a biplanar diode array. We used the forthcoming criteria for routine gamma analysis, 3% dose-error (global (G) normalization, 2 mm distance to agreement, and 10% low dose cutoff). The γ (3%G/2 mm) average passing rate was 98.9 ± 2.1%. Measurement-guided three-dimensional dose reconstruction on the patient CT dataset (excluding the Lung) resulted in a similar average agreement rate with the Calculator: 98.2 ± 2.0%. The mean γ (3%G/2 mm) passing rate comparing the Calculator to the TPS (again excluding the Lung) was 99.0 ± 1.0%. Because of the significant inhomogeneity, the Lung case was investigated separately. The calculator has an alternate heterogeneity correction mode that can change the results in the thorax for higher-energy beams (15 MV). As this correction is nonphysical and was optimized for simple slab geometries, its application leads to mixed results when compared to the TPS and independent Monte Carlo calculations, depending on the CT dataset and the plan. The Calculator vs. TPS 15 MV Guideline 5a IMRT and VMAT plans demonstrate 96.3% and 93.4% γ (3%G/2 mm) passing rates respectively. For the lower energies, which should be predominantly used in the thoracic region, the passing rates for the same plans and criteria range from 98.6 to 100%. Overall, the Calculator accuracy is sufficient for the intended use.


Assuntos
Algoritmos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Método de Monte Carlo , Imagens de Fantasmas
5.
J Appl Clin Med Phys ; 18(6): 32-48, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28891217

RESUMO

Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose (18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board-certified radiation oncologists manually segmented the metabolic tumor volume (MTV1 and MTV2 ) for each patient. For comparison, we used a graphical-based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128 from the original gray-level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D-reconstruction algorithms: maximum likelihood-ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray-levels of down-sampled volumes, and PET reconstruction algorithms. The features were extracted using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices (GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone difference matrices (NGTDM), shape-based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV1 -MTV2 , MTV1 -GBSV, MTV2 -GBSV; gray-levels: 64-32, 64-128, and 64-256; reconstruction algorithms: OSEM-FORE-OSEM, OSEM-FOREFBP, and OSEM-3DRP). We used |d¯| as a measure of radiomic feature reproducibility level, where any feature scored |d¯| ±SD ≤ |25|% ± 35% was considered reproducible. We used Bland-Altman analysis to evaluate the mean, standard deviation (SD), and upper/lower reproducibility limits (U/LRL) for radiomic features in response to variation in each testing parameter. Furthermore, we proposed U/LRL as a method to classify the level of reproducibility: High- ±1% ≤ U/LRL ≤ ±30%; Intermediate- ±30% < U/LRL ≤ ±45%; Low- ±45 < U/LRL ≤ ±50%. We considered any feature below the low level as nonreproducible (NR). Finally, we calculated the interclass correlation coefficient (ICC) to evaluate the reliability of radiomic feature measurements for each parameter. The segmented volumes of 65 patients (81.3%) scored Dice coefficient >0.75 for all three volumes. The result outcomes revealed a tendency of higher radiomic feature reproducibility among segmentation pair MTV1 -GBSV than MTV2 -GBSV, gray-level pairs of 64-32 and 64-128 than 64-256, and reconstruction algorithm pairs of OSEM-FOREIR and OSEM-FOREFBP than OSEM-3DRP. Although the choice of cervical tumor segmentation method, gray-level value, and reconstruction algorithm may affect radiomic features, some features were characterized by high reproducibility through all testing parameters. The number of radiomic features that showed insensitivity to variations in segmentation methods, gray-level discretization, and reconstruction algorithms was 10 (13%), 4 (5%), and 1 (1%), respectively. These results suggest that a careful analysis of the effects of these parameters is essential prior to any radiomics clinical application.


Assuntos
Fluordesoxiglucose F18/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Estudos de Coortes , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Prognóstico , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Carga Tumoral , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/radioterapia
6.
Int Braz J Urol ; 40(2): 190-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24856485

RESUMO

PURPOSE: To evaluate Lipiodol as a liquid, radio-opaque fiducial marker for image-guided radiation therapy (IGRT) for bladder cancer. MATERIALS AND METHODS: Between 2011 and 2012, 5 clinical T2a-T3b N0 M0 stage II-III bladder cancer patients were treated with maximal transurethral resection of a bladder tumor (TURBT) and image-guided radiation therapy (IGRT) to 64.8 Gy in 36 fractions ± concurrent weekly cisplatin-based or gemcitabine chemotherapy. Ten to 15mL Lipiodol, using 0.5mL per injection, was injected into bladder submucosa circumferentially around the entire periphery of the tumor bed immediately following maximal TURBT. The authors looked at inter-observer variability regarding the size and location of the tumor bed (CTVboost) on computed tomography scans with versus without Lipiodol. RESULTS: Median follow-up was 18 months. Lipiodol was visible on every orthogonal two-dimensional kV portal image throughout the entire, 7-week course of IGRT. There was a trend towards improved inter-observer agreement on the CTVboost with Lipiodol (p = 0.06). In 2 of 5 patients, the tumor bed based upon Lipiodol extended outside a planning target volume that would have been treated with a radiation boost based upon a cystoscopy report and an enhanced computed tomography (CT) scan for staging. There was no toxicity attributable to Lipiodol. CONCLUSIONS: Lipiodol constitutes a safe and effective fiducial marker that an urologist can use to demarcate a tumor bed immediately following maximal TURBT. Lipiodol decreases inter-observer variability in the definition of the extent and location of a tumor bed on a treatment planning CT scan for a radiation boost.


Assuntos
Carcinoma/radioterapia , Meios de Contraste , Óleo Etiodado , Marcadores Fiduciais , Radioterapia Guiada por Imagem/métodos , Neoplasias da Bexiga Urinária/radioterapia , Adulto , Carcinoma/diagnóstico por imagem , Carcinoma/patologia , Cistoscopia/métodos , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Variações Dependentes do Observador , Radiografia , Valores de Referência , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Resultado do Tratamento , Carga Tumoral , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia
7.
Microbiol Resour Announc ; 12(11): e0085223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37877714

RESUMO

Discovered in Pocatello, Idaho, soil near a tomato garden, siphovirus KillerTomato infects Microbacterium foliorum NRRL B-24224. KillerTomato is a lytic cluster EE phage with a 17,442-bp genome and 68.6% GC content. Of 25 genes, 20 were assigned putative functions, including a putative tail assembly chaperone protein with a programmed frameshift and an endolysin.

8.
Microbiol Resour Announc ; 12(12): e0094323, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991360

RESUMO

Discovered from soil in a flower planter in Pocatello, Idaho and using Microbacterium foliorum, SallyK is a lytic bacteriophage with a siphovirus morphology. It has a 62,883 bp-long genome with 103 putative genes. Based on gene content similarity to actinobacteriophages, SallyK is assigned to cluster EG.

9.
Med Phys ; 39(1): 342-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22225304

RESUMO

PURPOSE: Compensator-based IMRT coupled with the high dose rate flattening filter free (FFF) beams offers an intriguing possibility of delivering an intensity modulated radiation field in just a few seconds. As a first step, the authors evaluate the dosimetric accuracy of the treatment planning system (TPS) FFF beam model with compensators. METHODS: A 6 MV FFF beam from a TrueBeam accelerator (Varian Medical Systems, Palo Alto CA) was modeled in PINNACLE TPS (v. 9.0, Philips Radiation Oncology, Fitchburg WI). Flat brass slabs from 0.3 to 7 cm thick and an 18° brass wedge were used to adjust the beam model. A 2D (MAPCHECK) and 3D (ARCCHECK) diode arrays (Sun Nuclear Corp, Melbourne FL), were investigated for use with the compensator FFF beams. Corrections for diode sensitivity caused by the spectral changes in the beam were introduced. Four compensator plans based on the AAPM TG-119 report were developed. A composite ion chamber measurement, beam by beam MAPCHECK measurements, and a composite ARCCHECK measurement were performed. The array results were analyzed with the same thresholds as in TG-119 report-3%/3 mm with global dose normalization-as well as with the more stringent combinations of the gamma analysis criteria. RESULTS: The FFF beam shows a greater variation of the effective attenuation coefficient with brass thickness due to the prevalence of the low energy photons compared to the conventional 6X beam. As a result, a compromise had to be made while trying to achieve dose agreement for a combination of field sizes, brass thicknesses, and measurement depths (≥5 cm in water). An agreement of measured and calculated dose to within 1% was observed for brass thicknesses up to 2 cm. For the 3 cm slab, an error of up to 2.8% was noted for the field sizes above 10 × 10 cm(2), and up to 3.8% for the 5 × 5 cm(2) field. Both diode arrays exhibit a substantial sensitivity drop as the compensator thickness increases, reaching 10% for a 7 cm brass slab. A simple correction based on the brass thickness along the ray was introduced to counteract this effect. Pooled for five profiles, the average ratio of uncorrected and corrected MAPCHECK to ion chamber readings are 0.966 and 1.008, respectively. With the proper correction, all MAPCHECK measurement to calculation comparisons exhibit 100% γ(3%/3 mm) passing rates with global dose-error normalization. For the TG-119-type plans, the average γ(2%/2 mm) passing rate with local normalization is 94% (range 87.8%-98.3%). The lower ARCCHECK γ-analysis passing rates (corrected for diode sensitivity) are predictable based on the observed PDD discrepancies. However, with the 3%/3 mm thresholds and global normalization, the average γ-analysis passing rate is 96.4% (range 89.9%-100%). CONCLUSIONS: MAPCHECK analysis demonstrates high passing rates with the stringent γ(2%/2 mm) and local normalization criteria combination. The geometry of the ARCCHECK array creates a stress test for the FFF TPS model because of the shallow depth of the entrance diodes and large air cavity. Hence, the ARCCHECK γ-analysis passing rates are lower than with the MAPCHECK, while still on par with TG-119.


Assuntos
Radiometria/instrumentação , Radioterapia Conformacional/instrumentação , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Filtração/instrumentação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
10.
Prostate Cancer Prostatic Dis ; 24(1): 140-149, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32651467

RESUMO

BACKGROUND: To determine whether combining brachytherapy with immunotherapy is safe in prostate cancer (PCa) and provides synergistic effects, we performed a Phase I/II trial on the feasibility, safety, and benefit of concurrent delivery of anti-PD-1 (nivolumab) with high-dose-rate (HDR) brachytherapy and androgen deprivation therapy (ADT) in patients with Grade Group 5 (GG5) PCa. METHODS: Eligible patients were aged 18 years or older with diagnosis of GG5 PCa. Patients received ADT, nivolumab every two weeks for four cycles, with two cycles prior to first HDR, and two more cycles prior to second HDR, followed by external beam radiotherapy. The primary endpoint was to determine safety and feasibility. This Phase I/II trial is registered with ClinicalTrials.gov (NCT03543189). RESULTS: Between September 2018 and June 2019, six patients were enrolled for the Phase I safety lead-in with a minimum observation period of 3 months after nivolumab administration. Overall, nivolumab was well tolerated in combination with ADT and HDR treatment. One patient experienced a grade 3 dose-limiting toxicity (elevated Alanine aminotransferase and Aspartate aminotransferase) after the second cycle of nivolumab. Three patients (50%) demonstrated early response with no residual tumor detected in ≥4 of 6 cores on biopsy post-nivolumab (4 cycles) and 1-month post-HDR. Increase in CD8+ and FOXP3+/CD4+ T cells in tissues, and CD4+ effector T cells in peripheral blood were observed in early responders. CONCLUSION: Combination of nivolumab with ADT and HDR is well tolerated and associated with evidence of increased immune infiltration and antitumor activity.


Assuntos
Braquiterapia/métodos , Gradação de Tumores , Nivolumabe/administração & dosagem , Neoplasias da Próstata/terapia , Idoso , Antineoplásicos Imunológicos/administração & dosagem , Fracionamento da Dose de Radiação , Estudos de Viabilidade , Seguimentos , Humanos , Masculino , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Resultado do Tratamento
11.
J Appl Clin Med Phys ; 11(3): 3105, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717080

RESUMO

In this work, leakage radiation from EA200 series electron applicators on Siemens Primus accelerators is quantified, and its penetration ability in water and/or the shielding material Xenolite-NL established. Initially, measurement of leakage from 10 x 10 - 25 x 25 cm2 applicators was performed as a function of height along applicator and of lateral distance from applicator body. Relative to central-axis ionization maximum in solid water, the maximum leakage in air observed with a cylindrical ion chamber with 1 cm solid water buildup cap at a lateral distance of 2 cm from the front and right sidewalls of applicators were 17% and 14%, respectively; these maxima were recorded for 18 MeV electron beams and applicator sizes of >or=20 x 20 cm2. In the patient plane, the applicator leakage gave rise to a broad peripheral dose off-axis distance peak that shifted closer to the field edge as the electron energy increases. The maximum peripheral dose from normally incident primary electron beams at a depth of 1 cm in a water phantom was observed to be equal to 5% of the central-axis dose maximum and as high as 9% for obliquely incident beams with angles of obliquity

Assuntos
Elétrons/uso terapêutico , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Alta Energia/instrumentação , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia de Alta Energia/métodos
12.
J Appl Clin Med Phys ; 11(3): 3240, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717094

RESUMO

For an institution that already owns the licenses, it is economically advantageous and technically feasible to use Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI) with the BrainLab Novalis delivery system (BrainLAB A.G., Heimstetten, Germany). This takes advantage of the improved accuracy of the convolution algorithm in the presence of heterogeneities compared with the pencil beam calculation, which is particularly significant for lung SBRT treatments. The reference patient positioning DRRs still have to be generated by the BrainLab software from the CT images and isocenter coordinates transferred from Pinnacle. We validated this process with the end-to-end hidden target test, which showed an isocenter positioning error within one standard deviation from the previously established mean value. The Novalis treatment table attenuation is substantial (up to 6.2% for a beam directed straight up and up to 8.4% for oblique incidence) and has to be accounted for in calculations. A simple single-contour treatment table model was developed, resulting in mean differences between the measured and calculated attenuation factors of 0.0%-0.2%, depending on the field size. The maximum difference for a single incidence angle is 1.1%. The BrainLab micro-MLC (mMLC) leaf tip, although not geometrically round, can be represented in Pinnacle by an arch with satisfactory dosimetric accuracy. Subsequently, step-and-shoot (direct machine parameter optimization) IMRT dosimetric agreement is excellent. VMAT (called "SmartArc" in Pinnacle) treatments with constant gantry speed and dose rate are feasible without any modifications to the accelerator. Due to the 3 mm-wide mMLC leaves, the use of a 2 mm calculation grid is recommended. When dual arcs are used for the more complex cases, the overall dosimetric agreement for the SmartArc plans compares favorably with the previously reported results for other implementations of VMAT: gamma(3%,3mm) for absolute dose obtained with the biplanar diode array passing rates above 97% with the mean of 98.6%. However, a larger than expected dose error with the single-arc plans, confined predominantly to the isocenter region, requires further investigation.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Simulação por Computador , Humanos , Pulmão/efeitos da radiação , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Software
13.
Med Phys ; 36(12): 5404-11, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095252

RESUMO

In this article, the authors present a method for quickly and easily constructing test phantoms for PET and SPECT quality assurance. As a demonstration, they constructed a complex prototype test phantom, showing the strengths of the construction method. Images taken using a PET/CT and a SPECT scanner are presented, along with a qualitative evaluation of PET/CT using the test phantom. The construction technique provides a quick, easy, and cost effective means of constructing a phantom for use in nuclear medicine imaging.


Assuntos
Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/normas , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/normas , Porosidade , Controle de Qualidade , Fatores de Tempo
14.
J Med Imaging (Bellingham) ; 5(1): 011013, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29285518

RESUMO

Large variability in computed tomography (CT) radiomics feature values due to CT imaging parameters can have subsequent implications on the prognostic or predictive significance of these features. Here, we investigated the impact of pitch, dose, and reconstruction kernel on CT radiomic features. Moreover, we introduced correction factors to reduce feature variability introduced by reconstruction kernels. The credence cartridge radiomics and American College of Radiology (ACR) phantoms were scanned on five different scanners. ACR phantom was used for 3-D noise power spectrum (NPS) measurements to quantify correlated noise. The coefficient of variation (COV) was used as the variability assessment metric. The variability in texture features due to different kernels was reduced by applying the NPS peak frequency and region of interest (ROI) maximum intensity as correction factors. Most texture features were dose independent but were strongly kernel dependent, which is demonstrated by a significant shift in NPS peak frequency among kernels. Percentage improvement in robustness was calculated for each feature from original and corrected %COV values. Percentage improvements in robustness of 19 features were in the range of 30% to 78% after corrections. We show that NPS peak frequency and ROI maximum intensity can be used as correction factors to reduce variability in CT texture feature values due to reconstruction kernels.

15.
Phys Med ; 46: 180-188, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475772

RESUMO

Quantitative image features, also known as radiomic features, have shown potential for predicting treatment outcomes in several body sites. We quantitatively analyzed 18Fluorine-fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) uptake heterogeneity in the Metabolic Tumor Volume (MTV) of eighty cervical cancer patients to investigate the predictive performance of radiomic features for two treatment outcomes: the development of distant metastases (DM) and loco-regional recurrent disease (LRR). We aimed to fit the highest predictive features in multiple logistic regression models (MLRs). To generate such models, we applied backward feature selection method as part of Leave-One-Out Cross Validation (LOOCV) within a training set consisting of 70% of the original patient cohort. The trained MLRs were tested on an independent set consisted of 30% of the original cohort. We evaluated the performance of the final models using the Area under the Receiver Operator Characteristic Curve (AUC). Accordingly, six models demonstrated superior predictive performance for both outcomes (four for DM and two for LRR) when compared to both univariate-radiomic feature models and Standard Uptake Value (SUV) measurements. This demonstrated approach suggests that the ability of the pre-radiochemotherapy PET radiomics to stratify patient risk for DM and LRR could potentially guide management decisions such as adjuvant systemic therapy or radiation dose escalation.


Assuntos
Modelos Estatísticos , Neoplasias do Colo do Útero/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Resultado do Tratamento , Carga Tumoral , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/patologia
16.
Technol Cancer Res Treat ; 16(5): 595-608, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27502957

RESUMO

The effect of noise on image features has yet to be studied in depth. Our objective was to explore how significantly image features are affected by the addition of uncorrelated noise to an image. The signal-to-noise ratio and noise power spectrum were calculated for a positron emission tomography/computed tomography scanner using a Ge-68 phantom. The conventional and respiratory-gated positron emission tomography/computed tomography images of 31 patients with lung cancer were retrospectively examined. Multiple sets of noise images were created for each original image by adding Gaussian noise of varying standard deviation equal to 2.5%, 4.0%, and 6.0% of the maximum intensity for positron emission tomography images and 10, 20, 50, 80, and 120 Hounsfield units for computed tomography images. Image features were extracted from all images, and percentage differences between the original image and the noise image feature values were calculated. These features were then categorized according to the noise sensitivity. The contour-dependent shape descriptors averaged below 4% difference in positron emission tomography and below 13% difference in computed tomography between noise and original images. Gray level size zone matrix features were the most sensitive to uncorrelated noise exhibiting average differences >200% for conventional and respiratory-gated images in computed tomography and 90% in positron emission tomography. Image feature differences increased as the noise level increased for shape, intensity, and gray-level co-occurrence matrix features in positron emission tomography and for gray-level co-occurrence matrix and gray-level size zone matrix features in conventional computed tomography. Investigators should be aware of the noise effects on image features.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas/normas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Sensibilidade e Especificidade , Razão Sinal-Ruído
17.
Med Phys ; 44(3): 1050-1062, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112418

RESUMO

PURPOSE: Many radiomics features were originally developed for non-medical imaging applications and therefore original assumptions may need to be reexamined. In this study, we investigated the impact of slice thickness and pixel spacing (or pixel size) on radiomics features extracted from Computed Tomography (CT) phantom images acquired with different scanners as well as different acquisition and reconstruction parameters. The dependence of CT texture features on gray-level discretization was also evaluated. METHODS AND MATERIALS: A texture phantom composed of 10 different cartridges of different materials was scanned on eight different CT scanners from three different manufacturers. The images were reconstructed for various slice thicknesses. For each slice thickness, the reconstruction Field Of View (FOV) was varied to render pixel sizes ranging from 0.39 to 0.98 mm. A fixed spherical region of interest (ROI) was contoured on the images of the shredded rubber cartridge and the 3D printed, 20% fill, acrylonitrile butadiene styrene plastic cartridge (ABS20) for all phantom imaging sets. Radiomic features were extracted from the ROIs using an in-house program. Features categories were: shape (10), intensity (16), GLCM (24), GLZSM (11), GLRLM (11), and NGTDM (5), fractal dimensions (8) and first-order wavelets (128), for a total of 213 features. Voxel-size resampling was performed to investigate the usefulness of extracting features using a suitably chosen voxel size. Acquired phantom image sets were resampled to a voxel size of 1 × 1 × 2 mm3 using linear interpolation. Image features were therefore extracted from resampled and original datasets and the absolute value of the percent coefficient of variation (%COV) for each feature was calculated. Based on the %COV values, features were classified in 3 groups: (1) features with large variations before and after resampling (%COV >50); (2) features with diminished variation (%COV <30) after resampling; and (3) features that had originally moderate variation (%COV <50%) and were negligibly affected by resampling. Group 2 features were further studied by modifying feature definitions to include voxel size. Original and voxel-size normalized features were used for interscanner comparisons. A subsequent analysis investigated feature dependency on gray-level discretization by extracting 51 texture features from ROIs from each of the 10 different phantom cartridges using 16, 32, 64, 128, and 256 gray levels. RESULTS: Out of the 213 features extracted, 150 were reproducible across voxel sizes, 42 improved significantly (%COV <30, Group 2) after resampling, and 21 had large variations before and after resampling (Group 1). Ten features improved significantly after definition modification effectively removed their voxel-size dependency. Interscanner comparison indicated that feature variability among scanners nearly vanished for 8 of these 10 features. Furthermore, 17 out of 51 texture features were found to be dependent on the number of gray levels. These features were redefined to include the number of gray levels which greatly reduced this dependency. CONCLUSION: Voxel-size resampling is an appropriate pre-processing step for image datasets acquired with variable voxel sizes to obtain more reproducible CT features. We found that some of the radiomics features were voxel size and gray-level discretization-dependent. The introduction of normalizing factors in their definitions greatly reduced or removed these dependencies.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Algoritmos , Imagens de Fantasmas , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/instrumentação
18.
Med Phys ; 42(11): 6147-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26520707

RESUMO

PURPOSE: Previous studies show that dose to a moving target can be estimated using 4D measurement-guided dose reconstruction based on a process called virtual motion simulation, or VMS. A potential extension of VMS is to estimate dose during dynamic multileaf collimator (MLC)-tracking treatments. The authors introduce a modified VMS method and quantify its performance as proof-of-concept for tracking applications. METHODS: Direct measurements with a moving biplanar diode array were used to verify accuracy of the VMS dose estimates. A tracking environment for variably sized circular MLC apertures was simulated by sending preprogrammed control points to the MLC while simultaneously moving the accelerator treatment table. Sensitivity of the method to simulated tracking latency (0-700 ms) was also studied. Potential applicability of VMS to fast changing beam apertures was evaluated by modeling, based on the demonstrated dependence of the cumulative dose on the temporal dose gradient. RESULTS: When physical and virtual latencies were matched, the agreement rates (2% global/2 mm gamma) between the VMS and the biplanar dosimeter were above 96%. When compared to their own reference dose (0 induced latency), the agreement rates for VMS and biplanar array track closely up to 200 ms of induced latency with 10% low-dose cutoff threshold and 300 ms with 50% cutoff. Time-resolved measurements suggest that even in the modulated beams, the error in the cumulative dose introduced by the 200 ms VMS time resolution is not likely to exceed 0.5%. CONCLUSIONS: Based on current results and prior benchmarks of VMS accuracy, the authors postulate that this approach should be applicable to any MLC-tracking treatments where leaf speeds do not exceed those of the current Varian accelerators.


Assuntos
Artefatos , Neoplasias/radioterapia , Posicionamento do Paciente/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Algoritmos , Simulação por Computador , Humanos , Modelos Biológicos , Projetos Piloto , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Med Phys ; 42(8): 4435-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26233174

RESUMO

PURPOSE: The authors designed data, methods, and metrics that can serve as a standard, independent of any software package, to evaluate dose-volume histogram (DVH) calculation accuracy and detect limitations. The authors use simple geometrical objects at different orientations combined with dose grids of varying spatial resolution with linear 1D dose gradients; when combined, ground truth DVH curves can be calculated analytically in closed form to serve as the absolute standards. METHODS: dicom RT structure sets containing a small sphere, cylinder, and cone were created programmatically with axial plane spacing varying from 0.2 to 3 mm. Cylinders and cones were modeled in two different orientations with respect to the IEC 1217 Y axis. The contours were designed to stringently but methodically test voxelation methods required for DVH. Synthetic RT dose files were generated with 1D linear dose gradient and with grid resolution varying from 0.4 to 3 mm. Two commercial DVH algorithms-pinnacle (Philips Radiation Oncology Systems) and PlanIQ (Sun Nuclear Corp.)-were tested against analytical values using custom, noncommercial analysis software. In Test 1, axial contour spacing was constant at 0.2 mm while dose grid resolution varied. In Tests 2 and 3, the dose grid resolution was matched to varying subsampled axial contours with spacing of 1, 2, and 3 mm, and difference analysis and metrics were employed: (1) histograms of the accuracy of various DVH parameters (total volume, Dmax, Dmin, and doses to % volume: D99, D95, D5, D1, D0.03 cm(3)) and (2) volume errors extracted along the DVH curves were generated and summarized in tabular and graphical forms. RESULTS: In Test 1, pinnacle produced 52 deviations (15%) while PlanIQ produced 5 (1.5%). In Test 2, pinnacle and PlanIQ differed from analytical by >3% in 93 (36%) and 18 (7%) times, respectively. Excluding Dmin and Dmax as least clinically relevant would result in 32 (15%) vs 5 (2%) scored deviations for pinnacle vs PlanIQ in Test 1, while Test 2 would yield 53 (25%) vs 17 (8%). In Test 3, statistical analyses of volume errors extracted continuously along the curves show pinnacle to have more errors and higher variability (relative to PlanIQ), primarily due to pinnacle's lack of sufficient 3D grid supersampling. Another major driver for pinnacle errors is an inconsistency in implementation of the "end-capping"; the additional volume resulting from expanding superior and inferior contours halfway to the next slice is included in the total volume calculation, but dose voxels in this expanded volume are excluded from the DVH. PlanIQ had fewer deviations, and most were associated with a rotated cylinder modeled by rectangular axial contours; for coarser axial spacing, the limited number of cross-sectional rectangles hinders the ability to render the true structure volume. CONCLUSIONS: The method is applicable to any DVH-calculating software capable of importing dicom RT structure set and dose objects (the authors' examples are available for download). It includes a collection of tests that probe the design of the DVH algorithm, measure its accuracy, and identify failure modes. Merits and applicability of each test are discussed.


Assuntos
Algoritmos , Radiometria/métodos , Dosagem Radioterapêutica , Software , Conjuntos de Dados como Assunto , Modelos Lineares , Dinâmica não Linear , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador
20.
Brachytherapy ; 14(6): 818-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26452602

RESUMO

PURPOSE: To compare urinary, bowel, and sexual health-related quality-of-life (HRQOL) changes due to high-dose-rate (HDR) brachytherapy, low-dose-rate (LDR) brachytherapy, or intensity-modulated radiation therapy (IMRT) monotherapy for prostate cancer. METHODS AND MATERIALS: Between January 2002 and September 2013, 413 low-risk or favorable intermediate-risk prostate cancer patients were treated with HDR brachytherapy monotherapy to 2700-2800 cGy in two fractions (n = 85), iodine-125 LDR brachytherapy monotherapy to 14,500 cGy in one fraction (n = 249), or IMRT monotherapy to 7400-8100 cGy in 37-45 fractions (n = 79) without pelvic lymph node irradiation. No androgen deprivation therapy was given. Patients used an international prostate symptoms score questionnaire, an expanded prostate cancer index composite-26 bowel questionnaire, and a sexual health inventory for men questionnaire to assess their urinary, bowel, and sexual HRQOL, respectively, pretreatment and at 1, 3, 6, 9, 12, and 18 months posttreatment. RESULTS: Median follow-up was 32 months. HDR brachytherapy and IMRT patients had significantly less deterioration in their urinary HRQOL than LDR brachytherapy patients at 1 and 3 months after irradiation. The only significant decrease in bowel HRQOL between the groups was seen 18 months after treatment, at which point IMRT patients had a slight, but significant, deterioration in their bowel HRQOL compared with HDR and LDR brachytherapy patients. HDR brachytherapy patients had worse sexual HRQOL than both LDR brachytherapy and IMRT patients after treatment. CONCLUSIONS: IMRT and HDR brachytherapy cause less severe acute worsening of urinary HRQOL than LDR brachytherapy. However, IMRT causes a slight, but significant, worsening of bowel HRQOL compared with HDR and LDR brachytherapy.


Assuntos
Braquiterapia/efeitos adversos , Braquiterapia/métodos , Hemorragia Gastrointestinal/etiologia , Neoplasias da Próstata/radioterapia , Qualidade de Vida , Radioterapia de Intensidade Modulada/efeitos adversos , Doenças Retais/etiologia , Dor Abdominal/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Defecação/efeitos da radiação , Fracionamento da Dose de Radiação , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prostatismo/etiologia , Disfunções Sexuais Fisiológicas/etiologia , Inquéritos e Questionários , Transtornos Urinários/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA