Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nurs Crit Care ; 28(1): 80-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561020

RESUMO

BACKGROUND: The COVID-19 pandemic has been associated with an unprecedented number of critical care survivors. Their experiences through illness and recovery are likely to be complex, but little is known about how best to support them. AIM: This study aimed to explore experiences of illness and recovery from the perspective of survivors, their relatives and professionals involved in their care. STUDY DESIGN: In-depth qualitative interviews were conducted with three stakeholder groups during the first wave of the pandemic. A total of 23 participants (12 professionals, 6 survivors and 5 relatives) were recruited from 5 acute hospitals in England and interviewed by telephone or video call. Data analysis followed the principles of Reflexive Thematic Analysis. FINDINGS: Three themes were generated from their interview data: (1) Deteriorating fast-a downhill journey from symptom onset to critical care; (2) Facing a new virus in a hospital-a remote place; and (3) Returning home as a survivor, maintaining normality and recovering slowly. CONCLUSIONS: Our findings highlight challenges in accessing care and communication between patients, hospital staff and relatives. Following hospital discharge, patients adopted a reframed 'survivor identity' to cope with their experience of illness and slow recovery process. The concept of survivorship in this patient group may be beneficial to promote and explore further. RELEVANCE TO CLINICAL PRACTICE: All efforts should be made to continue to improve communication between patients, relatives and health professionals during critical care admissions, particularly while hospital visits are restricted. Adapting to life after critical illness may be more challenging while health services are restricted by the impacts of the pandemic. It may be beneficial to promote the concept of survivorship, following admission to critical care due to severe COVID-19.


Assuntos
COVID-19 , Cuidadores , Humanos , Pandemias , Pesquisa Qualitativa , Pessoal de Saúde
2.
Br J Pharmacol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075330

RESUMO

BACKGROUND AND PURPOSE: Antipsychotics such as olanzapine are associated with significant metabolic dysfunction, attributed to gut microbiome dysbiosis. A recent notion that most psychotropics are detrimental to the gut microbiome has arisen from consistent findings of metabolic adverse effects. However, unlike olanzapine, the metabolic effects of lurasidone are conflicting. Thus, this study investigates the contrasting effects of olanzapine and lurasidone on the gut microbiome to explore the hypothesis of 'gut neutrality' for lurasidone exposure. EXPERIMENTAL APPROACH: Using Sprague-Dawley rats, the effects of olanzapine and lurasidone on the gut microbiome were explored. Faecal and blood samples were collected weekly over a 21-day period to analyse changes to the gut microbiome and related metabolic markers. KEY RESULTS: Lurasidone triggered no significant weight gain or metabolic alterations, instead positively modulating the gut microbiome through increases in mean operational taxonomical units (OTUs) and alpha diversity. This novel finding suggests an underlying mechanism for lurasidone's metabolic inertia. In contrast, olanzapine triggered a statistically significant decrease in mean OTUs, substantial compositional variation and a depletion in short-chain fatty acid abundance. Microbiome depletion correlated with metabolic dysfunction, producing a 30% increase in weight gain, increased pro-inflammatory cytokine expression, and increased blood glycaemic and triglyceride levels. CONCLUSION AND IMPLICATIONS: Our results challenge the notion that all antipsychotics disrupt the gut microbiome similarly and highlights the potential benefits of gut-neutral antipsychotics, such as lurasidone, in managing metabolic side effects. Further research is warranted to validate these findings in humans to guide personalised pharmacological treatment regimens for schizophrenia.

3.
Nat Commun ; 15(1): 5294, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906885

RESUMO

Determining the balance between DNA double strand break repair (DSBR) pathways is essential for understanding treatment response in cancer. We report a method for simultaneously measuring non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). Using this method, we show that patient-derived glioblastoma (GBM) samples with acquired temozolomide (TMZ) resistance display elevated HR and MMEJ activity, suggesting that these pathways contribute to treatment resistance. We screen clinically relevant small molecules for DSBR inhibition with the aim of identifying improved GBM combination therapy regimens. We identify the ATM kinase inhibitor, AZD1390, as a potent dual HR/MMEJ inhibitor that suppresses radiation-induced phosphorylation of DSBR proteins, blocks DSB end resection, and enhances the cytotoxic effects of TMZ in treatment-naïve and treatment-resistant GBMs with TP53 mutation. We further show that a combination of G2/M checkpoint deficiency and reliance upon ATM-dependent DSBR renders TP53 mutant GBMs hypersensitive to TMZ/AZD1390 and radiation/AZD1390 combinations. This report identifies ATM-dependent HR and MMEJ as targetable resistance mechanisms in TP53-mutant GBM and establishes an approach for simultaneously measuring multiple DSBR pathways in treatment selection and oncology research.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Glioblastoma , Temozolomida , Proteína Supressora de Tumor p53 , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Temozolomida/farmacologia , Linhagem Celular Tumoral , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Animais , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos
4.
Int J Pharm ; 648: 123614, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979632

RESUMO

Self-emulsifying drug delivery systems (i.e. SEDDS, SMEDDS and SNEDDS) are widely employed as solubility and bioavailability enhancing formulation strategies for poorly water-soluble drugs. Despite the capacity for SEDDS to effectively facilitate oral drug absorption, tolerability concerns exist due to the capacity for high concentrations of surfactants (typically present within SEDDS) to induce gastrointestinal toxicity and mucosal irritation. With new knowledge surrounding the role of the gut microbiota in modulating intestinal inflammation and mucosal injury, there is a clear need to determine the impact of SEDDS on the gut microbiota. The current study is the first of its kind to demonstrate the detrimental impact of SEDDS on the gut microbiota of Sprague-Dawley rats, following daily oral administration (100 mg/kg) for 21 days. SEDDS comprising a lipid phase (i.e. Type I, II and III formulations according to the Lipid Formulation Classification Scheme) induced significant changes to the composition and diversity of the gut microbiota, evidenced through a reduction in operational taxonomic units (OTUs) and alpha diversity (Shannon's index), along with statistically significant shifts in beta diversity (according to PERMANOVA of multi-dimensional Bray-Curtis plots). Key signatures of gut microbiota dysbiosis correlated with the increased expression of pro-inflammatory cytokines within the jejunum, while mucosal injury was characterised by significant reductions in plasma citrulline levels, a validated biomarker of enterocyte mass and mucosal barrier integrity. These findings have potential clinical ramifications for chronically administered drugs that are formulated with SEDDS and stresses the need for further studies that investigate dose-dependent effects of SEDDS on the gastrointestinal microenvironment in a clinical setting.


Assuntos
Microbioma Gastrointestinal , Ratos , Animais , Ratos Sprague-Dawley , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Administração Oral , Disponibilidade Biológica , Solubilidade , Lipídeos , Emulsões
5.
Future Healthc J ; 8(2): e326-e329, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34286209

RESUMO

During the first wave of intensive care unit admissions with COVID-19, in response to the constraints of social distancing we introduced a new digitally enabled critical care rehabilitation pathway. Using smartwatch technology, this pathway rapidly enabled our multidisciplinary team to observe the recovery of a COVID-19 cohort across eight NHS acute hospitals across the south of England. This represents one of the geographically largest smartwatch studies of its kind.

6.
Future Healthc J ; 7(3): e47-e49, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33094254

RESUMO

In the acute hospital setting the COVID-19 pandemic presents some unique challenges to acute patient care. These include accurate recognition of cases, confirmation of both testing requests and results, establishing patient acuity and alerting to deterioration. We report our experience introducing a digital COVID-19 assessment tool with an associated live dashboard at two acute NHS hospitals, enabling accurate hospital-level reporting alongside risk stratification.

7.
Ecol Evol ; 10(4): 2062-2073, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128138

RESUMO

Migratory waterfowl vector plant seeds and other tissues, but little attention has focused on the potential of avian vectoring of plant pathogens. Extensive meadows of eelgrass (Zostera marina) in southwest Alaska support hundreds of thousands of waterfowl during fall migration and may be susceptible to plant pathogens. We recovered DNA of organisms pathogenic to eelgrass from environmental samples and in the cloacal contents of eight of nine waterfowl species that annually migrate along the Pacific coast of North America and Asia. Coupled with a signal of asymmetrical gene flow of eelgrass running counter to that expected from oceanic and coastal currents between Large Marine Ecosystems, this evidence suggests waterfowl are vectors of eelgrass pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA