Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Arch Virol ; 164(4): 1135-1145, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30799509

RESUMO

The carcasses of animals infected with bovine spongiform encephalopathy (BSE), scrapie or chronic wasting disease (CWD) that remain in the environment (exposed or buried) may continue to act as reservoirs of infectivity. We conducted two experiments under near-field conditions to investigate the survival and dissemination of BSE infectivity after burial in a clay or sandy soil. BSE infectivity was either contained within a bovine skull or buried as an uncontained bolus of BSE-infected brain. Throughout the five-year period of the experiment, BSE infectivity was recovered in similar amounts from heads exhumed annually from both types of soil. Very low levels of infectivity were detected in the soil immediately surrounding the heads, but not in samples remote from them. Similarly, there was no evidence of significant lateral movement of infectivity from the buried bolus over 4 years although there was a little vertical movement in both directions. However, bioassay analysis of limited numbers of samples of rain water that had drained through the bolus clay lysimeter indicated that infectivity was present in filtrates. sPMCA analysis also detected low levels of PrPSc in the filtrates up to 25 months following burial, raising the concern that leakage of infectivity into ground water could occur. We conclude that transmissible spongiform encephalopathy infectivity is likely to survive burial for long periods of time, but not to migrate far from the site of burial unless a vector or rain water drainage transports it. Risk assessments of contaminated sites should take these findings into account.


Assuntos
Encéfalo/metabolismo , Encefalopatia Espongiforme Bovina/virologia , Proteínas PrPSc/metabolismo , Solo/química , Animais , Bovinos , Encefalopatia Espongiforme Bovina/transmissão , Proteínas PrPSc/genética
2.
Proc Natl Acad Sci U S A ; 111(30): 11169-74, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25034251

RESUMO

Understanding the molecular parameters governing prion propagation is crucial for controlling these lethal, proteinaceous, and infectious neurodegenerative diseases. To explore the effects of prion protein (PrP) sequence and structural variations on intra- and interspecies transmission, we integrated studies in deer, a species naturally susceptible to chronic wasting disease (CWD), a burgeoning, contagious epidemic of uncertain origin and zoonotic potential, with structural and transgenic (Tg) mouse modeling and cell-free prion amplification. CWD properties were faithfully maintained in deer following passage through Tg mice expressing cognate PrP, and the influences of naturally occurring PrP polymorphisms on CWD susceptibility were accurately reproduced in Tg mice or cell-free systems. Although Tg mice also recapitulated susceptibility of deer to sheep prions, polymorphisms that provided protection against CWD had distinct and varied influences. Whereas substitutions at residues 95 and 96 in the unstructured region affected CWD propagation, their protective effects were overridden during replication of sheep prions in Tg mice and, in the case of residue 96, deer. The inhibitory effects on sheep prions of glutamate at residue 226 in elk PrP, compared with glutamine in deer PrP, and the protective effects of the phenylalanine for serine substitution at the adjacent residue 225, coincided with structural rearrangements in the globular domain affecting interaction between α-helix 3 and the loop between ß2 and α-helix 2. These structure-function analyses are consistent with previous structural investigations and confirm a role for plasticity of this tertiary structural epitope in the control of PrP conversion and strain propagation.


Assuntos
Polimorfismo Genético , Proteínas PrPSc/genética , Substituição de Aminoácidos , Animais , Cervos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas PrPSc/metabolismo , Estrutura Secundária de Proteína , Ovinos , Doenças dos Ovinos/genética , Doenças dos Ovinos/metabolismo , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/metabolismo
3.
J Gen Virol ; 96(10): 3165-3178, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26281831

RESUMO

Natural scrapie in sheep occurs in classical and atypical forms, which may be distinguished on the basis of the associated neuropathology and properties of the disease-associated prion protein on Western blots. First detected in 1998, atypical scrapie is known to have occurred in UK sheep since the 1980s. However, its aetiology remains unclear and it is often considered as a sporadic, non-contagious disease unlike classical scrapie which is naturally transmissible. Although atypical scrapie tends to occur in sheep of prion protein (PRNP) genotypes that are different from those found predominantly in classical scrapie, there is some overlap so that there are genotypes in which both scrapie forms can occur. In this search for early atypical scrapie cases, we made use of an archive of fixed and frozen sheep samples, from both scrapie-affected and healthy animals (∼1850 individuals), dating back to the 1960s. Using a selection process based primarily on PRNP genotyping, but also on contemporaneous records of unusual clinical signs or pathology, candidate sheep samples were screened by Western blot, immunohistochemistry and strain-typing methods using tg338 mice. We identified, from early time points in the archive, three atypical scrapie cases, including one sheep which died in 1972 and two which showed evidence of mixed infection with classical scrapie. Cases with both forms of scrapie in the same animal as recognizable entities suggest that mixed infections have been around for a long time and may potentially contribute to the variety of scrapie strains.


Assuntos
Coinfecção/etiologia , Coinfecção/patologia , Genótipo , Príons/genética , Scrapie/etiologia , Scrapie/patologia , Animais , Western Blotting , Coinfecção/epidemiologia , Técnicas de Genotipagem , Imuno-Histoquímica , Camundongos Transgênicos , Epidemiologia Molecular , Scrapie/epidemiologia , Carneiro Doméstico , Reino Unido/epidemiologia
4.
J Gen Virol ; 96(12): 3703-3714, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26611906

RESUMO

Breed- and prion protein (PRNP) genotype-related disease phenotype variability has been observed in sheep infected with the 87V murine scrapie strain. Therefore, the stability of this strain was tested by inoculating sheep-derived 87V brain material back into VM mice. As some sheep-adapted 87V disease phenotypes were reminiscent of CH1641 scrapie, transgenic mice (Tg338) expressing ovine prion protein (PrP) were inoculated with the same sheep-derived 87V sources and with CH1641. Although at first passage in VM mice the sheep-derived 87V sources showed some divergence from the murine 87V control, all the characteristics of murine 87V infection were recovered at second passage from all sheep sources. These included 100 % attack rates and indistinguishable survival times, lesion profiles, immunohistochemical features of disease-associated PrP accumulation in the brain and PrP biochemical properties. All sheep-derived 87V sources, as well as CH1641, were transmitted to Tg338 mice with identical clinical, pathological, immunohistochemical and biochemical features. While this might potentially indicate that sheep-adapted 87V and CH1641 are the same strain, profound divergences were evident, as murine 87V was unable to infect Tg338 mice but was lethal for VM mice, while the reverse was true for CH1641. These combined data suggest that: (i) murine 87V is stable and retains its properties after passage in sheep; (ii) it can be isolated from sheep showing a CH1641-like or a more conventional scrapie phenotype; and (iii) sheep-adapted 87V scrapie, with conventional or CH1641-like phenotype, is biologically distinct from experimental CH1641 scrapie, despite the fact that they behave identically in a single transgenic mouse line.


Assuntos
Scrapie/patologia , Animais , Encéfalo/patologia , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Ovinos , Especificidade da Espécie
5.
PLoS Pathog ; 9(10): e1003692, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204258

RESUMO

Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP) primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg) mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A) at (OvPrP-A136) infected with SSBP/1 scrapie prions propagated a relatively stable (S) prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V) at 136 (OvPrP-V136) infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U), diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb) PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation.


Assuntos
Epigênese Genética , Mutação de Sentido Incorreto , Proteínas PrPSc/biossíntese , Doenças Priônicas/metabolismo , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/farmacologia , Bovinos , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Ovinos
6.
Biochim Biophys Acta ; 1832(6): 826-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23474307

RESUMO

Expression of the cellular prion protein (PrP(C)) is crucial for the development of prion diseases. Resistance to prion diseases can result from reduced availability of the prion protein or from amino acid changes in the prion protein sequence. We propose here that increased production of a natural PrP α-cleavage fragment, C1, is also associated with resistance to disease. We show, in brain tissue, that ARR homozygous sheep, associated with resistance to disease, produced PrP(C) comprised of 25% more C1 fragment than PrP(C) from the disease-susceptible ARQ homozygous and highly susceptible VRQ homozygous animals. Only the C1 fragment derived from the ARR allele inhibits in-vitro fibrillisation of other allelic PrP(C) variants. We propose that the increased α-cleavage of ovine ARR PrP(C) contributes to a dominant negative effect of this polymorphism on disease susceptibility. Furthermore, the significant reduction in PrP(C) ß-cleavage product C2 in sheep of the ARR/ARR genotype compared to ARQ/ARQ and VRQ/VRQ genotypes, may add to the complexity of genetic determinants of prion disease susceptibility.


Assuntos
Alelos , Encéfalo/metabolismo , Resistência à Doença/fisiologia , Homozigoto , Peptídeos , Proteínas PrPC , Animais , Encéfalo/patologia , Química Encefálica/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Ovinos
7.
J Gen Virol ; 95(Pt 8): 1855-1859, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828334

RESUMO

Bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt-Jakob disease in humans have previously been shown to be caused by the same strain of transmissible spongiform encephalopathy agent. It is hypothesized that the agent spread to humans following consumption of food products prepared from infected cattle. Despite evidence supporting zoonotic transmission, mouse models expressing human prion protein (HuTg) have consistently shown poor transmission rates when inoculated with cattle BSE. Higher rates of transmission have however been observed when these mice are exposed to BSE that has been experimentally transmitted through sheep or goats, indicating that humans may potentially be more susceptible to BSE from small ruminants. Here we demonstrate that increased transmissibility of small ruminant BSE to HuTg mice was not due to replication of higher levels of infectivity in sheep brain tissue, and is instead due to other specific changes in the infectious agent.


Assuntos
Encéfalo/patologia , Doenças das Cabras/transmissão , Doenças Priônicas/transmissão , Príons/biossíntese , Doenças dos Ovinos/transmissão , Animais , Bovinos , Modelos Animais de Doenças , Cabras , Humanos , Camundongos , Camundongos Transgênicos , Príons/genética , Ovinos
8.
J Biol Chem ; 287(44): 37219-32, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22948149

RESUMO

Whereas prion replication involves structural rearrangement of cellular prion protein (PrP(C)), the existence of conformational epitopes remains speculative and controversial, and PrP transformation is monitored by immunoblot detection of PrP(27-30), a protease-resistant counterpart of the pathogenic scrapie form (PrP(Sc)) of PrP. We now describe the involvement of specific amino acids in conformational determinants of novel monoclonal antibodies (mAbs) raised against randomly chimeric PrP. Epitope recognition of two mAbs depended on polymorphisms controlling disease susceptibility. Detection by one, referred to as PRC5, required alanine and asparagine at discontinuous mouse PrP residues 132 and 158, which acquire proximity when residues 126-218 form a structured globular domain. The discontinuous epitope of glycosylation-dependent mAb PRC7 also mapped within this domain at residues 154 and 185. In accordance with their conformational dependence, tertiary structure perturbations compromised recognition by PRC5, PRC7, as well as previously characterized mAbs whose epitopes also reside in the globular domain, whereas conformation-independent epitopes proximal or distal to this region were refractory to such destabilizing treatments. Our studies also address the paradox of how conformational epitopes remain functional following denaturing treatments and indicate that cellular PrP and PrP(27-30) both renature to a common structure that reconstitutes the globular domain.


Assuntos
Epitopos/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/biossíntese , Anticorpos Monoclonais Murinos/isolamento & purificação , Bovinos , Sequência Conservada , Cervos , Evolução Molecular Direcionada , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Humanos , Hibridomas , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Proteínas PrPC/química , Proteínas PrPC/imunologia , Proteínas PrPSc/química , Proteínas PrPSc/imunologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Saimiri , Deleção de Sequência , Ovinos
9.
J Gen Virol ; 94(Pt 8): 1922-1932, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720218

RESUMO

Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder of cattle, and its transmission to humans through contaminated food is thought to be the cause of the variant form of Creutzfeldt-Jakob disease. BSE is believed to have spread from the recycling in cattle of ruminant tissue in meat and bone meal (MBM). However, during this time, sheep and goats were also exposed to BSE-contaminated MBM. Both sheep and goats are experimentally susceptible to BSE, and while there have been no reported natural BSE cases in sheep, two goat BSE field cases have been documented. While cases of BSE are rare in small ruminants, the existence of scrapie in both sheep and goats is well established. In the UK, during 2006-2007, a serious outbreak of clinical scrapie was detected in a large dairy goat herd. Subsequently, 200 goats were selected for post-mortem examination, one of which showed biochemical and immunohistochemical features of the disease-associated prion protein (PrP(TSE)) which differed from all other infected goats. In the present study, we investigated this unusual case by performing transmission bioassays into a panel of mouse lines. Following characterization, we found that strain properties such as the ability to transmit to different mouse lines, lesion profile pattern, degree of PrP deposition in the brain and biochemical features of this unusual goat case were neither consistent with goat BSE nor with a goat scrapie herdmate control. However, our results suggest that this unusual case has BSE-like properties and highlights the need for continued surveillance.


Assuntos
Doenças das Cabras/diagnóstico , Doenças Priônicas/diagnóstico , Príons/isolamento & purificação , Experimentação Animal , Animais , Bioensaio , Doenças das Cabras/transmissão , Cabras , Camundongos , Camundongos Transgênicos , Doenças Priônicas/transmissão , Príons/patogenicidade , Reino Unido
10.
J Gen Virol ; 94(Pt 12): 2819-2827, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24045112

RESUMO

The transmission of bovine spongiform encephalopathy (BSE) to humans, leading to variant Creutzfeldt-Jakob disease has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health. Until recently, TSE disease in cattle was thought to be caused by a single agent strain, BSE, also known as classical BSE, or BSE-C. However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. To model the risk to human health, we previously inoculated these two forms of atypical BSE (BASE and BSE-H) into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP) (HuTg) but were unable to detect any signs of TSE pathology in these mice. However, despite the absence of TSE pathology, upon subpassage of some BASE-challenged HuTg mice, a TSE was observed in recipient gene-targeted bovine PrP Tg (Bov6) mice but not in HuTg mice. Disease transmission from apparently healthy individuals indicates the presence of subclinical BASE infection in mice expressing human PrP that cannot be identified by current diagnostic methods. However, due to the lack of transmission to HuTg mice on subpassage, the efficiency of mouse-to-mouse transmission of BASE appears to be low when mice express human rather than bovine PrP.


Assuntos
Encefalopatia Espongiforme Bovina/fisiopatologia , Encefalopatia Espongiforme Bovina/transmissão , Príons/metabolismo , Animais , Encéfalo/metabolismo , Bovinos , Humanos , Camundongos , Camundongos Transgênicos , Príons/genética
11.
J Virol ; 86(21): 11856-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915816

RESUMO

Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) (or prion disease) that is readily transmissible to sheep by experimental infection and has the shortest incubation period in animals with the ARQ/ARQ PRNP genotype (at codons 136, 154, and 171). Because it is possible that sheep in the United Kingdom could have been infected with BSE by being fed contaminated meat and bone meal supplements at the same time as cattle, there is considerable interest in the responses of sheep to BSE inoculation. Epidemiological evidence suggests that very young individuals are more susceptible to TSE infection; however, this has never been properly tested in sheep. In the present study, low doses of BSE were fed to lambs of a range of ages (~24 h, 2 to 3 weeks, 3 months, and 6 months) and adult sheep. The incidence of clinical BSE disease after inoculation was high in unweaned lambs (~24 h and 2 to 3 weeks old) but much lower in older weaned animals The incubation period was also found to be influenced by the genotype at codon 141 of the PRNP gene, as lambs that were LF heterozygotes had a longer mean incubation period than those that were homozygotes of either type. The results suggest that sheep in the United Kingdom would have been at high risk of BSE infection only if neonatal animals had inadvertently ingested contaminated supplementary foodstuffs.


Assuntos
Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/transmissão , Príons/patogenicidade , Doenças dos Ovinos/imunologia , Desmame , Fatores Etários , Animais , Bovinos , Códon , Predisposição Genética para Doença , Incidência , Período de Incubação de Doenças Infecciosas , Príons/genética , Ovinos , Doenças dos Ovinos/epidemiologia , Fatores de Tempo , Reino Unido
12.
PLoS One ; 18(11): e0293845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917783

RESUMO

Efforts to prevent human-to-human transmission of variant Creutzfeldt-Jakob disease (vCJD) by contaminated blood would be aided by the development of a sensitive diagnostic test that could be routinely used to screen blood donations. As blood samples from vCJD patients are extremely rare, here we describe the optimisation of real-time quaking-induced conversion (RT-QuIC) for detection of PrPSc (misfolded prion protein, a marker of prion infection) in blood samples from an established large animal model of vCJD, sheep experimentally infected with bovine spongiform encephalopathy (BSE). Comparative endpoint titration experiments with RT-QuIC, miniaturized bead protein misfolding cyclic amplification (mb-PMCA) and intracerebral inoculation of a transgenic mouse line expressing sheep PrP (tgOvARQ), demonstrated highly sensitive detection of PrPSc by RT-QuIC in a reference sheep brain homogenate. Upon addition of a capture step with iron oxide beads, the RT-QuIC assay was able to detect PrPSc in whole blood samples from BSE-infected sheep up to two years before disease onset. Both RT-QuIC and mb-PMCA also demonstrated sensitive detection of PrPSc in a reference vCJD-infected human brain homogenate, suggesting that either assay may be suitable for application to human blood samples. Our results support the further development and evaluation of RT-QuIC as a diagnostic or screening test for vCJD.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Príons , Bovinos , Camundongos , Humanos , Animais , Ovinos , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/metabolismo , Encéfalo/metabolismo , Proteínas Priônicas/metabolismo , Encefalopatia Espongiforme Bovina/diagnóstico , Encefalopatia Espongiforme Bovina/metabolismo
13.
J Gen Virol ; 93(Pt 5): 1132-1140, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22302882

RESUMO

Until recently, transmissible spongiform encephalopathy (TSE) disease in cattle was thought to be caused by a single agent strain, bovine spongiform encephalopathy (BSE) (classical BSE or BSE-C). However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. These atypical BSE isolates have been previously transmitted to a range of transgenic mouse models overexpressing PrP from different species at different levels, on a variety of genetic backgrounds. To control for genetic background and expression level in the analysis of these isolates, we performed here a comprehensive comparison of the neuropathological and molecular properties of all three BSE agents (BASE, BSE-C and BSE-H) upon transmission into the same gene-targeted transgenic mouse line expressing the bovine prion protein (Bov6) and a wild-type control of the same genetic background. Significantly, upon challenge with these BSE agents, we found that BASE did not produce shorter survival times in these mice compared with BSE-C, contrary to previous studies using overexpressing bovine transgenic mice. Amyloid plaques were only present in mice challenged with atypical BSE and neuropathological features, including intensity of PrP deposition in the brain and severity of vacuolar degeneration were less pronounced in BASE compared with BSE-C-challenged mice.


Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Expressão Gênica , Príons/metabolismo , Animais , Encéfalo/patologia , Bovinos , Modelos Animais de Doenças , Encefalopatia Espongiforme Bovina/mortalidade , Encefalopatia Espongiforme Bovina/patologia , Camundongos , Camundongos Transgênicos , Índice de Gravidade de Doença , Análise de Sobrevida
14.
J Gen Virol ; 93(Pt 7): 1624-1629, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22495232

RESUMO

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Príons/fisiologia , Scrapie/transmissão , Doença de Emaciação Crônica/transmissão , Animais , Bovinos , Cervos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Príons/genética , Medição de Risco , Ovinos , Zoonoses/transmissão
15.
J Virol ; 85(3): 1174-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084466

RESUMO

The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.


Assuntos
Síndrome de Creutzfeldt-Jakob/induzido quimicamente , Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/transmissão , Príons/biossíntese , Príons/genética , Scrapie/transmissão , Animais , Bovinos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos
16.
Sci Rep ; 11(1): 11931, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099797

RESUMO

To understand the possible role of mixed-prion infections in disease presentation, the current study reports the co-infection of sheep with bovine spongiform encephalopathy (BSE) and scrapie. The bovine BSE agent was inoculated subcutaneously into sheep with ARQ/ARQ or VRQ/ARQ PRNP genotypes either at the same time as subcutaneous challenge with scrapie, or three months later. In addition, VRQ/VRQ sheep naturally infected with scrapie after being born into a scrapie-affected flock were challenged subcutaneously with BSE at eight or twenty one months-of-age. Sheep were analysed by incubation period/attack rate, and western blot of brain tissue determined the presence of BSE or scrapie-like PrPSc. Serial protein misfolding cyclic amplification (sPMCA) that can detect very low levels of BSE in the presence of an excess of scrapie agent was also applied to brain and lymphoreticular tissue. For VRQ/ARQ sheep challenged with mixed infections, scrapie-like incubation periods were produced, and no BSE agent was detected. However, whilst ARQ/ARQ sheep developed disease with BSE-like incubation periods, some animals had a dominant scrapie western blot phenotype in brain, but BSE was detected in these sheep by sPMCA. In addition, VRQ/VRQ animals challenged with BSE after natural exposure to scrapie had scrapie-like incubation periods and dominant scrapie PrPSc in brain, but one sheep had BSE detectable by sPMCA in the brain. Overall, the study demonstrates for the first time that for scrapie/BSE mixed infections, VRQ/ARQ sheep with experimental scrapie did not propagate BSE but VRQ/VRQ sheep with natural scrapie could propagate low levels of BSE, and whilst BSE readily propagated in ARQ/ARQ sheep it was not always the dominant PrPSc strain in brain tissue. Indeed, for several animals, a dominant scrapie biochemical phenotype in brain did not preclude the presence of BSE prion.


Assuntos
Doenças dos Bovinos/diagnóstico , Coinfecção/diagnóstico , Encefalopatia Espongiforme Bovina/diagnóstico , Scrapie/diagnóstico , Doenças dos Ovinos/diagnóstico , Animais , Encéfalo/metabolismo , Bovinos , Doenças dos Bovinos/metabolismo , Coinfecção/genética , Coinfecção/metabolismo , Encefalopatia Espongiforme Bovina/complicações , Encefalopatia Espongiforme Bovina/metabolismo , Genótipo , Fenótipo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Scrapie/complicações , Scrapie/metabolismo , Ovinos , Doenças dos Ovinos/genética , Doenças dos Ovinos/metabolismo
17.
Blood ; 112(12): 4739-45, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18647958

RESUMO

The emergence of variant Creutzfeld-Jakob disease, following on from the bovine spongiform encephalopathy (BSE) epidemic, led to concerns about the potential risk of iatrogenic transmission of disease by blood transfusion and the introduction of costly control measures to protect blood supplies. We previously reported preliminary data demonstrating the transmission of BSE and natural scrapie by blood transfusion in sheep. The final results of this experiment, reported here, give unexpectedly high transmission rates by transfusion of 36% for BSE and 43% for scrapie. A proportion of BSE-infected transfusion recipients (3 of 8) survived for up to 7 years without showing clinical signs of disease. The majority of transmissions resulted from blood collected from donors at more than 50% of the estimated incubation period. The high transmission rates and relatively short and consistent incubation periods in clinically positive recipients suggest that infectivity titers in blood were substantial and/or that blood transfusion is an efficient method of transmission. This experiment has established the value of using sheep as a model for studying transmission of variant Creutzfeld-Jakob disease by blood products in humans.


Assuntos
Doenças Priônicas/transmissão , Reação Transfusional , Algoritmos , Animais , Doadores de Sangue , Transfusão de Sangue/veterinária , Bovinos , Progressão da Doença , Eficiência , Encefalopatia Espongiforme Bovina/sangue , Encefalopatia Espongiforme Bovina/genética , Encefalopatia Espongiforme Bovina/patologia , Encefalopatia Espongiforme Bovina/transmissão , Predisposição Genética para Doença , Doenças Priônicas/sangue , Doenças Priônicas/patologia , Doenças Priônicas/veterinária , Scrapie/sangue , Scrapie/genética , Scrapie/patologia , Scrapie/transmissão , Ovinos , Fatores de Tempo
18.
BMC Vet Res ; 5: 8, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19208228

RESUMO

BACKGROUND: In the wake of the epidemic of bovine spongiform encephalopathy the British government established a flock of sheep from which scrapie-free animals are supplied to laboratories for research. Three breeds of sheep carrying a variety of different genotypes associated with scrapie susceptibility/resistance were imported in 1998 and 2001 from New Zealand, a country regarded as free from scrapie. They are kept in a purpose-built Sheep Unit under strict disease security and are monitored clinically and post mortem for evidence of scrapie. It is emphasised that atypical scrapie, as distinct from classical scrapie, has been recognised only relatively recently and differs from classical scrapie in its clinical, neuropathological and biochemical features. Most cases are detected in apparently healthy sheep by post mortem examination. RESULTS: The occurrence of atypical scrapie in three sheep in (or derived from) the Sheep Unit is reported. Significant features of the affected sheep included their relatively high ages (6 y 1 mo, 7 y 9 mo, 9 y 7 mo respectively), their breed (all Cheviots) and their similar PRNP genotypes (AFRQ/AFRQ, AFRQ/ALRQ, and AFRQ/AFRQ, respectively). Two of the three sheep showed no clinical signs prior to death but all were confirmed as having atypical scrapie by immunohistochemistry and Western immunoblotting. Results of epidemiological investigations are presented and possible aetiologies of the cases are discussed. CONCLUSION: By process of exclusion, a likely explanation for the three cases of atypical scrapie is that they arose spontaneously and were not infected from an exterior source. If correct, this raises challenging issues for countries which are currently regarded as free from scrapie. It would mean that atypical scrapie is liable to occur in flocks worldwide, especially in older sheep of susceptible genotypes. To state confidently that both the classical and atypical forms of scrapie are absent from a population it is necessary for active surveillance to have taken place.


Assuntos
Scrapie/patologia , Animais , Western Blotting , Encéfalo/patologia , Genótipo , Imuno-Histoquímica/veterinária , Príons/genética , Scrapie/genética , Ovinos , Reino Unido
19.
Biochim Biophys Acta ; 1772(6): 619-28, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17560089

RESUMO

The study of the biology of scrapie in sheep is irretrievably associated with the genetics of the PrP gene in sheep. Control of susceptibility and resistance is so closely linked to certain alleles of the sheep PrP gene that no review on scrapie can avoid PrP genetics. Before the importance of PrP protein was discovered and before the influence of the gene itself on disease incidence was understood, it was clear there were some sheep which were more susceptible to natural scrapie than others and that this feature was heritable. These early observations have led to the development and use of PrP genotyping in sheep in what is probably the biggest genetic selection process ever attempted. The accompanying increase in surveillance has also discovered a novel type of scrapie, the subject of much speculation about its origin.


Assuntos
Príons/genética , Scrapie/genética , Animais , Bovinos , Encefalopatia Espongiforme Bovina/genética , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Predisposição Genética para Doença , Genótipo , Príons/metabolismo , Scrapie/metabolismo , Scrapie/patologia , Ovinos
20.
Vet Immunol Immunopathol ; 116(3-4): 163-71, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17320972

RESUMO

Peyer's patches (PPs) are the most probable sites of intestinal uptake of the transmissible spongiform encephalopathy (TSE) agent. The amount of PP tissue varies considerably between different age groups of individuals, and whether this variation is related to susceptibility to TSE infection raises an intriguing possibility. The purpose of this study was to determine the surface area of PP tissue and the number of associated lymphoid follicles in different age groups of Neuropathogenesis Unit (NPU) Cheviot sheep. Terminal ilea were obtained from 33 sheep of different ages. Samples of ileal tissue were collected for immunocytochemistry and immunolabelled for prion protein (PrP). Specimens were then fixed in acetic acid, stained with methylene blue and transilluminated. Image analysis software was used to calculate the area of intestinal and PP tissue. The number of associated lymphoid follicles was determined using a dissecting microscope. Results showed a marked fall in surface area of PP tissue and lymphoid follicle density around puberty (about 8-9 months of age in NPU Cheviot sheep) and both measures remained low throughout adulthood. Using the Spearman's rank correlation coefficient, r(s), these two measures were found to be closely correlated (r(s)=0.899, n=33, P<0.0001). There was also a significant (negative) correlation between age and the two respective measures (surface area of PP tissue versus age, r(s)=-0.879 (n=33, P<0.0001); lymphoid follicle density versus age r(s)=-0.943 (n=33, P<0.0001). Immunolabelling for PrP was observed primarily in the light zone of lymphoid follicles. Results obtained from this study are useful for future oral pathogenesis studies of the NPU Cheviot flock. They may also offer a possible biological explanation for the apparent age-susceptibility relationship observed in natural cases of TSEs and might help to explain the young age-distribution of cases.


Assuntos
Nódulos Linfáticos Agregados/anatomia & histologia , Ovinos/anatomia & histologia , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Íleo/anatomia & histologia , Íleo/imunologia , Tecido Linfoide/anatomia & histologia , Tecido Linfoide/imunologia , Nódulos Linfáticos Agregados/imunologia , Príons/metabolismo , Príons/patogenicidade , Scrapie/etiologia , Scrapie/imunologia , Scrapie/patologia , Ovinos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA