Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 42(2): 1052-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150943

RESUMO

Rhodococcus opacus strain PD630 (R. opacus PD630), is an oleaginous bacterium, and also is one of few prokaryotic organisms that contain lipid droplets (LDs). LD is an important organelle for lipid storage but also intercellular communication regarding energy metabolism, and yet is a poorly understood cellular organelle. To understand the dynamics of LD using a simple model organism, we conducted a series of comprehensive omics studies of R. opacus PD630 including complete genome, transcriptome and proteome analysis. The genome of R. opacus PD630 encodes 8947 genes that are significantly enriched in the lipid transport, synthesis and metabolic, indicating a super ability of carbon source biosynthesis and catabolism. The comparative transcriptome analysis from three culture conditions revealed the landscape of gene-altered expressions responsible for lipid accumulation. The LD proteomes further identified the proteins that mediate lipid synthesis, storage and other biological functions. Integrating these three omics uncovered 177 proteins that may be involved in lipid metabolism and LD dynamics. A LD structure-like protein LPD06283 was further verified to affect the LD morphology. Our omics studies provide not only a first integrated omics study of prokaryotic LD organelle, but also a systematic platform for facilitating further prokaryotic LD research and biofuel development.


Assuntos
Metabolismo dos Lipídeos , Rhodococcus/metabolismo , Proteínas de Bactérias/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Genoma Bacteriano , Genômica , Lipídeos , Organelas/metabolismo , Organelas/ultraestrutura , Proteômica , Rhodococcus/genética , Rhodococcus/ultraestrutura , Triglicerídeos/biossíntese , Triglicerídeos/metabolismo
2.
J Lipid Res ; 53(7): 1245-53, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22534641

RESUMO

Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle.


Assuntos
Bactérias/química , Bactérias/metabolismo , Lipídeos/química , Organelas/química , Organelas/metabolismo , Proteômica , Animais , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica
3.
PLoS One ; 8(6): e66817, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825567

RESUMO

Systematic determination of gene function is an essential step in fully understanding the precise contribution of each gene for the proper execution of molecular functions in the cell. Gene functional linkage is defined as to describe the relationship of a group of genes with similar functions. With thousands of genomes sequenced, there arises a great opportunity to utilize gene evolutionary information to identify gene functional linkages. To this end, we established a computational method (called TRACE) to trace gene footprints through a gene functional network constructed from 341 prokaryotic genomes. TRACE performance was validated and successfully tested to predict enzyme functions as well as components of pathway. A so far undescribed chromosome partitioning-like protein ro03654 of an oleaginous bacteria Rhodococcus sp. RHA1 (RHA1) was predicted and verified experimentally with its deletion mutant showing growth inhibition compared to RHA1 wild type. In addition, four proteins were predicted to act as prokaryotic SNARE-like proteins, and two of them were shown to be localized at the plasma membrane. Thus, we believe that TRACE is an effective new method to infer prokaryotic gene functional linkages by tracing evolutionary events.


Assuntos
Bactérias/genética , Evolução Molecular , Genes Bacterianos/genética , Ligação Genética , Genômica/métodos , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Óperon/genética
4.
Nat Protoc ; 8(1): 43-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222457

RESUMO

The lipid droplet (LD) is a cell organelle that has been linked to human metabolic syndromes and that can be exploited for the development of biofuels. The isolation of LDs is crucial for carrying out morphological and biochemical studies of this organelle. In the past two decades, LDs have been isolated from several organisms and investigated by microscopy, proteomics and lipidomics. However, these studies need to be extended to more model organisms, as well as to more animal tissues. Thus, a standard method that can be easily applied to these new samples with the need for minimal optimization is essential. Here we provide an LD isolation protocol that is relatively simple and suitable for a wide range of tissues and organisms. On the basis of previous studies, this 7-h protocol can yield 15-100 µg of protein-equivalent high-quality LDs that satisfy the requirements for current LD research in most organisms.


Assuntos
Lipídeos/química , Organelas/metabolismo , Proteômica/métodos , Animais , Western Blotting , Células CHO , Caenorhabditis elegans/metabolismo , Cricetinae , Fígado/metabolismo , Camundongos , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA