Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Langmuir ; 40(29): 14749-14765, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989975

RESUMO

Motivated by the remarkable innate characteristics of cells in living organisms, we have found that hybrid materials that combine bioorganisms with nanomaterials have significantly propelled advancements in industrial applications. However, the practical deployment of unmodified living entities is inherently limited due to their sensitivity to environmental fluctuations. To surmount these challenges, an efficacious strategy for the biomimetic mineralization of living organisms with nanomaterials has emerged, demonstrating extraordinary potential in biotechnology. Among them, innovative composites have been engineered by enveloping bioorganisms with a metal-organic framework (MOF) coating. This review systematically summarizes the latest developments in living cells/MOF-based composites, detailing the methodologies employed in structure fabrication and their diverse applications, such as bioentity preservation, sensing, catalysis, photoluminescence, and drug delivery. Moreover, the synergistic benefits arising from the individual compounds are elucidated. This review aspires to illuminate new prospects for fabricating living cells/MOF composites and concludes with a perspective on the prevailing challenges and impending opportunities for future research in this field.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Humanos , Animais
2.
Inorg Chem ; 63(37): 17274-17286, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39213634

RESUMO

S-scheme heterojunction photocatalyst-coupled plasma-resonance effect can enhance the response range and absorption of light and charge transfer, and, at the same time, obtain strong redox ability, which is an effective way to improve CO2 conversion. In this work, plasma S-scheme heterojunctions of Pd/BiOBr/CdS with heterogeneous interfaces have been successfully constructed by a simple hydrothermal method. The possible reaction mechanism was proposed by in situ infrared, ultraviolet-visible spectroscopy (UV-vis), electron paramagnetic resonance (ESR), density functional theory (DFT), and electrochemical techniques. It was proved that the plasma S-scheme heterojunction can enhance the charge separation efficiency and improve the photocatalytic activity. When the loading ratio is Pd0.6-10%-BiOBr/CdS, it has the best performance, and the CO yield is 30.24 µmol/g, which is 15 and 30 times that of pure BiOBr and CdS, respectively. The results show that with the strong absorption of photon energy and the special electron transfer mode of S-scheme heterojunction, the charge can be effectively separated and transferred, and the photocatalytic activity is significantly improved. This study provides a useful strategy for charge transfer kinetics of plasma S-scheme heterojunction photocatalysts.

3.
Inorg Chem ; 62(16): 6224-6232, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027827

RESUMO

The limited reactive active sites on the surface of NiMoO4 electrodes are the main bottleneck, restricting the rate performance of the corresponding supercapacitors (SCs). However, it is still a difficult problem to improve the utilization of redox reaction sites by adjusting the interface of the nickel molybdate (NiMoO4) electrode. This study reports a two-dimensional (2D)/2D core-shell electrode on a carbon cloth (CC) with NiMoO4 nanosheets grown on NiFeZn-LDH nanosheets (NFZ@NMO/CC). The interface of the 2D/2D core-shell structure promotes the redox reaction by improving OH- adsorption and diffusion capacity (diffusion coefficient = 1.47 × 10-7 cm2 s-1) and increasing the electrochemical active surface area (ECSA = 737.5 mF cm-2), which are much larger than the pure NiMoO4 electrode (2.5 × 10-9 cm2 s-1 and 177.5 mF cm-2). The NFZ@NMO/CC electrode exhibits an excellent capacitance of 2864.4 F g-1 at 1 A g-1 and an outstanding rate performance (92%), which is 3.18 times and 1.9 times those of the NiMoO4 nanosheets (33%) and the NiFeZn-LDH nanosheets (57.14%), respectively. Additionally, an asymmetric SC was assembled with NFZ@NMO/CC as the anode and Zn metal-organic framework (MOF)-derived carbon nanosheet (CNS)/CC as the cathode, which exhibited superior energy and power densities (70 Wh kg-1 and 709 W kg-1) with good cycling capability.

4.
Inorg Chem ; 62(38): 15432-15439, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37682796

RESUMO

Utilizing artificial photosynthesis for the conversion of CO2 into value-added fuels has been recognized as a promising strategy for the ever-increasing energy crisis and the greenhouse effect. Herein, the element doping engineering of red spherical g-C3N4 having oxygen bonded with compositional carbon (C-O-C) for CO2 photoreduction has been explored to address this challenge. The C-O bond was formed by hydrothermal treatment with dicyandiamide and 1,3,5-trichlorotriazine. The experimental and DFT results displayed the optimum oxygen substitution sites and demonstrated that the oxygen doping greatly improved the light utilization efficiency, CO2 affinity, and charge carrier transfer, which enhanced photoreduction efficiency of CO2. The evolution rates of CO (47.2 µmol g-1) and CH4 (9.1 µmol g-1) using O-CN were much higher than that of bulk-CN without a cocatalyst. The main reason was the contribution of the O 2p orbital to the conduction band (CB) and valence band of O-CN, which effectively reduced the electron mass, facilitating electron/hole separation and enhancing its fluidity. Furthermore, the Fermi level also shifted to the bottom of the CB, leading to higher electron density, which further improved the CO2 reduction ability. Our study marks an important step for developing high-performance photocatalysts for reduction of CO2.

5.
Environ Sci Technol ; 57(42): 16131-16140, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812398

RESUMO

Improving the wettability of carbon-based catalysts and overcoming the rate-limiting step of the Mn+1/Mn+ cycle are effective strategies for activating peroxymonosulfate (PMS). In this study, the coupling of Co-NC, layered double hydroxide (LDH), and CoSx heterostructure (CoSx@LDH@Co-NC) was constructed to completely degrade ofloxacin (OFX) within 10 min via PMS activation. The reaction rate of 1.07 min-1 is about 1-2 orders of magnitude higher than other catalysts. The interfacial effect of confined Co-NC and layered double hydroxide (LDH) not only enhanced the wettability of catalysts but also increased the vacancy concentration; it facilitated easier contact with the interface reactive oxygen species (ROS). Simultaneously, reduced sulfur species (CoSx) accelerated the Co3+/Co2+ cycle, acquiring long-term catalytic activity. The catalytic mechanism revealed that the synergistic effect of hydroxyl groups and reduced sulfur species promoted the formation of 1O2, with a longer lifespan and a longer migration distance, and resisted the influence of nontarget background substances. Moreover, considering the convenience of practical application, the CoSx@LDH@Co-NC-based catalytic membrane was prepared, which had zero discharge of OFX and no decay in continuous operation for 5.0 h. The activity of the catalytic membrane was also verified in actual wastewater. Consequently, this work not only provides a novel strategy for designing excellent catalysts but also is applicable to practical organic wastewater treatment.


Assuntos
Carbono , Ofloxacino , Peróxidos , Enxofre , Hidróxidos , Antibacterianos
6.
Inorg Chem ; 61(11): 4681-4689, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35258950

RESUMO

Interior and surface synergistic modifications can endow the photocatalytic reaction with tuned photogenerated carrier flow at the atomic level. Herein, a new class of 2D/2D SnNb2O6/Ni-doped ZnIn2S4 (SNO/Ni-ZIS) S-scheme heterojunctions is synthesized by a simple hydrothermal strategy, which was used to evaluate the synergy between interior and surface modifications. Theoretical calculations show that the S-scheme heterojunction boosts the desorption of H atoms for rapid H2 evolution. As a result, 25% SNO/Ni0.4-ZIS exhibits significantly improved PHE activity under visible light, roughly 4.49 and 2.00 times stronger than that of single ZIS and Ni0.4-ZIS, respectively. In addition, 25% SNO/Ni0.4-ZIS also shows superior structural stability. This work provides advanced insight for developing high-performance S-scheme systems from photocatalyst design to mechanistic insight.

7.
Inorg Chem ; 61(3): 1765-1777, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35007423

RESUMO

Defect engineering can be used as a potential tool to activate metal-organic frameworks by regulating the pore structure, electronic properties, and catalytic activity. Herein, linker defects were effectively controlled by adjusting the amount of formic acid, and UiO-67 with different CO2 reduction capabilities was obtained. Among them, UiO-67-200 had the highest ability to selectively reduce CO2 to CO (12.29 µmol g-1 h-1). On the one hand, the results based on time-resolved photoluminescence decay curves and photochemical experiments revealed that UiO-67-200 had the highest charge separation efficiency. On the other hand, the linker defects affected the band structure of UiO-67 by changing the lowest unoccupied molecular orbital (LUMO) based on the density functional theory and UV-vis spectra. Hence, the proper linker defects enhanced the ligand-to-metal charge transfer process by promoting the transfer of electrons between the highest occupied molecular orbital and LUMO. Additionally, in situ Fourier transform infrared spectra and 13CO2 labeling experiments also indicated that COOH* was an important intermediate for CO formation and that CO originated from the photoreduction of CO2.

8.
Inorg Chem ; 61(9): 4171-4183, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35188745

RESUMO

The development of the global economy in recent years, environmental problems, greenhouse effect, and so forth have been of concern for countries all over the world. The key for solving the greenhouse effect is the reduction of CO2. With the development of photocatalytic reduction of CO2, hybrid photocatalytic nanostructures composed of noble metals and plasmonic semiconductors are being widely studied. In this work, S-scheme photocatalysts with a g-C3N4/WO3·H2O/Pd heterostructure was constructed by introducing ultrathin Pd nanosheets into the optimized 2D/2D g-C3N4/WO3·H2O binary system. The S-scheme charge transfer generated by the matched band gap of g-C3N4 and WO3·H2O can effectually improve the electron transfer rate and the redox ability of photogenerated carriers. The introduction of Pd nanosheets can inject a large number of hot electrons into the semiconductor on the basis of the S-scheme heterojunction to participate in the reaction. The S-scheme electron transfer method is used to improve the utilization rate of thermionic electrons and achieve the effect of widening the near-infrared-light absorption area of the composite material. Moreover, the reaction was carried out in water without the addition of any sacrificial agent, which can better reflect the green environmental protection of the experiment. This investigation will promote the broad-spectrum application of new and environment-friendly thermoelectron-assisted S-scheme photocatalysts, and on this basis, the possible reaction mechanism is discussed.

9.
Inorg Chem ; 61(29): 11207-11217, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35834359

RESUMO

Photocatalytic CO2 reduction technology is of great importance to alleviate energy crisis and environmental pollution; however, it remains a serious challenge due to the fast recombination of carriers. In this study, we report a three-dimensional structure of a ZnIn2S4/Au/CdS composite photocatalyst for the CO2 reduction reaction, where Au nanoparticles (NPs) are evenly anchored on the surface of ZnIn2S4 by photodeposition and Au NPs are wrapped around by CdS. In ZnIn2S4/Au/CdS composite photocatalysts, Au NPs act as a bridge to construct a "semiconductor-metal-semiconductor" tandem electron transfer mechanism (ZnIn2S4 → Au → CdS) heterojunction, which greatly promotes the transfer of photogenerated electrons. It is worth noting that Au NPs, as a local surface plasmon resonance (LSPR) effect excited source to generate excited-state electrons, further improve the photoreduction CO2 activity. Under UV-vis light irradiation, the CO yield of ZnIn2S4/Au/CdS can reach 63.07 µmol·g-1·h-1, which is higher than that of 6.37 µmol·g-1·h-1 for pure ZnIn2S4, 0.93 µmol·g-1·h-1 for CdS, 8.9 µmol·g-1·h-1 for ZnIn2S4/CdS, 31.04 µmol·g-1·h-1 for ZnIn2S4/Au, and 5.37 µmol·g-1·h-1 for CdS/Au. In addition, the ternary ZnIn2S4/Au/CdS composite photocatalyst has good cyclic stability. This study broadens the idea of designing photocatalysts with good carrier separation efficiency.

10.
Small ; 17(39): e2102539, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405940

RESUMO

Improving greatly the separation efficiency of interfacial charge carrier is a major challenge in photocatalysis. Herein, a new class of C60 -mediated NH2 -MIL-125(Ti)/Zn0.5 Cd0.5 S S-scheme heterojunction with enhanced interfacial charge carrier separation is designed and synthesized. The constructed S-scheme heterojunction thermodynamically favors photocatalytic H2 evolution because of the large driving force resulting from its strong redox abilities. As a consequence, the optimum proportion of C60 -mediated NH2 -MIL-125(Ti)/Zn0.5 Cd0.5 S S-scheme heterojunction displays comparable H2 evolution activity with a rate of 7825.20 µmol h-1 g-1 under visible light irradiation, which is about 93.05 times, 6.38 times and 2.65 times higher than that of 2% C60 /NH2 -MIL-125(Ti), Zn0.5 Cd0.5 S and 45% NH2 -MIL-125(Ti)/Zn0.5 Cd0.5 S, and outperforms the majority of the previously reported MOFs-based photocatalysts. Spectroscopic characterizations and theory calculations indicate that the S-scheme heterojunction can powerfully promote the separation of photogenerated carriers. This work offers a new insight for future design and development of highly active MOFs-based photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA