Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305233

RESUMO

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Assuntos
Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Transtorno Depressivo Maior/genética , Fosfatidilinositol 3-Quinases , Neurônios , Plasticidade Neuronal
2.
J Micromech Microeng ; 32(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814808

RESUMO

Among approaches aiming toward functional nervous system restoration, those implementing microfabrication techniques allow the manufacture of platforms with distinct geometry where neurons can develop and be guided to form patterned connections in vitro. The interplay between neuronal development and the microenvironment, shaped by the physical limitations, remains largely unknown. Therefore, it is crucial to have an efficient way to quantify neuronal morphological changes induced by physical or contact guidance of the microenvironment. In this study, we first devise and assess a method to prepare anisotropic, gradient poly(dimethylsiloxane) micro-ridge/groove arrays featuring variable local pattern width. We then demonstrate the ability of this single substrate to simultaneously profile the morphologcial and synaptic connectivity changes of primary cultured hippocampal neurons reacting to variable physical conditons, throughout neurodevelopment, in vitro. The gradient microtopography enhanced adhesion within microgrooves, increasing soma density with decreasing pattern width. Decreasing pattern width also reduced dendritic arborization and increased preferential axon growth. Finally, decreasing pattern geometry inhibited presynaptic puncta architecture. Collectively, a method to examine structural development and connectivity in response to physical stimuli is established, and potentially provides insight into microfabricated geometries which promote neural regeneration and repair.

3.
J Neurosci ; 38(2): 363-378, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29175955

RESUMO

UBE3A gene copy number variation and the resulting overexpression of the protein E6AP is directly linked to autism spectrum disorders (ASDs). However, the underlying cellular and molecular neurobiology remains less clear. Here we report the role of ASD-related increased dosage of Ube3A/E6AP in dendritic arborization during brain development. We show that increased E6AP expression in primary cultured neurons leads to a reduction in dendritic branch number and length. The E6AP-dependent remodeling of dendritic arborization results from retraction of dendrites by thinning and fragmentation at the tips of dendrite branches, leading to shortening or removal of dendrites. This remodeling effect is mediated by the ubiquitination and degradation of XIAP (X-linked inhibitors of aptosis protein) by E6AP, which leads to activation of caspase-3 and cleavage of microtubules. In vivo, male and female Ube3A 2X ASD mice show decreased XIAP levels, increased caspase-3 activation, and elevated levels of tubulin cleavage. Consistently, dendritic branching and spine density are reduced in cortical neurons of Ube3A 2X ASD mice. In revealing an important role for Ube3A/E6AP in ASD-related developmental alteration in dendritic arborization and synapse formation, our findings provide new insights into the pathogenesis of Ube3A/E6AP-dependent ASD.SIGNIFICANCE STATEMENT Copy number variation of the UBE3A gene and aberrant overexpression of the gene product E6AP protein is a common cause of autism spectrum disorders (ASDs). During brain development, dendritic growth and remodeling play crucial roles in neuronal connectivity and information integration. We found that in primary neurons and in Ube3A transgenic autism mouse brain, overexpression of E6AP leads to significant loss of dendritic arborization. This effect is mediated by the ubiquitination of XIAP (X-linked inhibitor of aptosis protein) by E6AP, subsequent activation of caspases, and the eventual cleavage of microtubules, leading to local degeneration and retraction at the tips of dendritic branches. These findings demonstrate dysregulation in neuronal structural stability as a major cellular neuropathology in ASD.


Assuntos
Transtorno do Espectro Autista , Caspase 3/metabolismo , Plasticidade Neuronal/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Variações do Número de Cópias de DNA , Feminino , Dosagem de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Microtúbulos/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
4.
J Biol Chem ; 289(38): 26249-26262, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25104354

RESUMO

Heterochromatin protein 1α (HP1α) is involved in regulation of chromatin plasticity, DNA damage repair, and centromere dynamics. HP1α detects histone dimethylation and trimethylation of Lys-9 via its chromodomain. HP1α localizes to heterochromatin in interphase cells but is liberated from chromosomal arms at the onset of mitosis. However, the structural determinants required for HP1α localization in interphase and the regulation of HP1α dynamics have remained elusive. Here we show that centromeric localization of HP1α depends on histone H3 Lys-9 trimethyltransferase SUV39H1 activity in interphase but not in mitotic cells. Surprisingly, HP1α liberates from chromosome arms in early mitosis. To test the role of this dissociation, we engineered an HP1α construct that persistently localizes to chromosome arms. Interestingly, persistent localization of HP1α to chromosome arms perturbs accurate kinetochore-microtubule attachment due to an aberrant distribution of chromosome passenger complex and Sgo1 from centromeres to chromosome arms that prevents resolution of sister chromatids. Further analyses showed that Mis14 and perhaps other PXVXL-containing proteins are involved in directing localization of HP1α to the centromere in mitosis. Taken together, our data suggest a model in which spatiotemporal dynamics of HP1α localization to centromere is governed by two distinct structural determinants. These findings reveal a previously unrecognized but essential link between HP1α-interacting molecular dynamics and chromosome plasticity in promoting accurate cell division.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Mitose , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Homólogo 5 da Proteína Cromobox , Cromossomos Humanos/metabolismo , Células HEK293 , Células HeLa , Heterocromatina/metabolismo , Humanos , Cinetocoros/metabolismo , Metiltransferases/metabolismo , Transporte Proteico , Proteínas Repressoras/metabolismo , Fuso Acromático/metabolismo
5.
J Biol Chem ; 289(30): 20638-49, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24917673

RESUMO

Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1 (HP1) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1. This borealin-HP1 interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1 interaction, demonstrating the spatial requirement of HP1 in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1 and CPC localization in the centromere and illustrate the critical role of borealin-HP1 interaction in orchestrating an accurate cell division.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos/metabolismo , Motivos de Aminoácidos , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/genética , Centrômero/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos/genética , Células HEK293 , Células HeLa , Humanos , Estrutura Terciária de Proteína
6.
J Neurochem ; 134(6): 1067-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077708

RESUMO

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPARs) are the primary mediators for inter-neuronal communication and play a crucial role in higher brain functions including learning and memory. Our previous work demonstrated that AMPARs are subject to ubiquitination by the E3 ligase Nedd4, resulting in EPS15-mediated receptor internalization and Ubiquitin (Ub)-proteasome pathway (UPP)-dependent degradation. Protein ubiquitination is a highly dynamic and reversible process, achieved via the balance between ubiquitination and deubiquitination. However, deubiquitination of mammalian AMPARs and the responsible deubiquitinating enzymes remain elusive. In this study, we identify USP46 as the deubiquitinating enzyme for AMPARs. We find that AMPARs are subject to K63 type ubiquitination, and USP46 is able to deubiquitinate AMPARs in vivo and in vitro. In heterologous cells and neurons, expression of USP46 results in a significant reduction in AMPAR ubiquitination, accompanied by a reduced rate in AMPAR degradation and an increase in surface AMPAR accumulation. By contrast, knockdown of USP46 by RNAi leads to elevated AMPAR ubiquitination and a reduction in surface AMPARs at synapses in neurons. Consistently, miniature excitatory postsynaptic currents recordings show reduced synaptic strength in neurons expressing USP46-selective RNAi. These results demonstrate USP46-mediated regulation of AMPAR ubiquitination and turnover, which may play an important role in synaptic plasticity and brain function. Protein ubiquitination is a highly dynamic and reversible process, achieved via the balance between ubiquitination and deubiquitination. The glutamatergic AMPARs, which mediate most of the excitatory synaptic transmission in the brain, are known to be subjected to Nedd4-mediated ubiquitination; however, the deubiquitination process and the responsible deubiquitinating enzymes (DUBs) for mammalian AMPARs remain elusive. We find that AMPARs are subject to K63-type ubiquitination, and identify USP46 as the DUB for AMPARs. USP46 deubiquitinates AMPARs in vitro and in vivo. Up- or down-regulation of USP46 leads to changes in AMPAR ubiquitination, surface expression, and trafficking, as well as the strength of synaptic transmission. USP46-mediated regulation of AMPAR ubiquitination and turnover may play an important role in synaptic plasticity and brain function.


Assuntos
Encéfalo/fisiologia , Endopeptidases/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Técnicas de Patch-Clamp , Transporte Proteico/fisiologia , Ensaio de Radioimunoprecipitação , Ratos , Ratos Sprague-Dawley , Transfecção , Ubiquitinação/fisiologia
7.
Acta Neuropathol Commun ; 11(1): 163, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814324

RESUMO

Rare cases of paraneoplastic obesity in children suggest sporadic obesity might also arise from an adaptive immune cell-mediated mechanism. Since the hypothalamus is a central regulator of feeding behavior and energy expenditure, we quantified lymphocytic inflammation in this region in a cohort of obese and non-obese human post-mortem brains. We report that CD8-positive cytotoxic T-cells are increased in hypothalamic median eminence/arcuate nucleus (ME/Arc) and bed nucleus of the stria terminalis in 40% of obese compared to non-obese patients, but not in other hypothalamic nuclei or brain regions. CD8 T-cells were most abundant in individuals with concurrent obesity and diabetes. Markers of cytotoxic T-cell induced damage, activated caspase 3 and poly-ADP ribose, were also elevated in the ME/Arc of obese patients. To provoke CD8 cytotoxic T-cell infiltrates in ventromedial region of hypothalamus in mice we performed stereotactic injections of an adeno-associated virus expressing immunogenic green fluorescent protein or saline. AAV but not saline injections triggered hypothalamic CD8 T-cell infiltrates associated with a rapid weight gain in mice recapitulating the findings in human obesity. This is the first description of the neuropathology of human obesity and when combined with its reconstitution in a mouse model suggests adaptive immunity may drive as much as 40% of the human condition.


Assuntos
Obesidade Infantil , Animais , Humanos , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Linfócitos T CD8-Positivos , Hipotálamo/metabolismo , Obesidade Infantil/metabolismo , Linfócitos T
8.
Commun Biol ; 6(1): 347, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997626

RESUMO

SINE-VNTR-Alu (SVA) retrotransposons arose and expanded in the genome of hominoid primates concurrent with the slowing of brain maturation. We report genes with intronic SVA transposons are enriched for neurodevelopmental disease and transcribed into long non-coding SVA-lncRNAs. Human-specific SVAs in microcephaly CDK5RAP2 and epilepsy SCN8A gene introns repress their expression via transcription factor ZNF91 to delay neuronal maturation. Deleting the SVA in CDK5RAP2 initiates multi-dimensional and in SCN8A selective sodium current neuronal maturation by upregulating these genes. SVA-lncRNA AK057321 forms RNA:DNA heteroduplexes with the genomic SVAs and upregulates these genes to initiate neuronal maturation. SVA-lncRNA AK057321 also promotes species-specific cortex and cerebellum-enriched expression upregulating human genes with intronic SVAs (e.g., HTT, CHAF1B and KCNJ6) but not mouse orthologs. The diversity of neuronal genes with intronic SVAs suggest this hominoid-specific SVA transposon-based gene regulatory mechanism may act at multiple steps to specialize and achieve neoteny of the human brain.


Assuntos
RNA Longo não Codificante , Retroelementos , Animais , Humanos , Retroelementos/genética , RNA Longo não Codificante/genética , Repetições Minissatélites , Elementos Nucleotídeos Curtos e Dispersos , Primatas/genética , Fator 1 de Modelagem da Cromatina/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular/genética
9.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909588

RESUMO

The circuit origins of aggression in autism spectrum disorder remain undefined. Here we report Tac1-expressing glutamatergic neurons in ventrolateral division of ventromedial hypothalamus (VMHvl) drive intermale aggression. Aggression is increased due to increases of Ube3a gene dosage in the VMHvl neurons when modeling autism due to maternal 15q11-13 triplication. Targeted deletion of increased Ube3a copies in VMHvl reverses the elevated aggression adult mice. VMHvl neurons form excitatory synapses onto hypothalamic arcuate nucleus AgRP/NPY neurons through a NRXN1-CBLN1-GluD1 transsynaptic complex and UBE3A impairs this synapse by decreasing Cbln1 gene expression. Exciting AgRP/NPY arcuate neurons leads to feedback inhibition of VMHvl neurons and inhibits aggression. Asymptomatic increases of UBE3A synergize with a heterozygous deficiency of presynaptic Nrxn1 or postsynaptic Grid1 (both ASD genes) to increase aggression. Targeted deletions of Grid1 in arcuate AgRP neurons impairs the VMHvl to AgRP/NPY neuron excitatory synapses while increasing aggression. Chemogenetic/optogenetic activation of arcuate AgRP/NPY neurons inhibits VMHvl neurons and represses aggression. These data reveal that multiple autism genes converge to regulate the VMHvl-arcuate AgRP/NPY glutamatergic synapse. The hypothalamic circuitry implicated by these data suggest impaired excitation of AgRP/NPY feedback inhibitory neurons may explain the increased aggression behavior found in genetic forms of autism.

10.
iScience ; 25(7): 104595, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800757

RESUMO

Duplication and haploinsufficiency of the USP7 gene are implicated in autism spectrum disorders (ASD), but the role for USP7 in neurodevelopment and contribution to ASD pathogenesis remain unknown. We find that in primary neurons, overexpression of USP7 increases dendritic branch number and total dendritic length, whereas knockdown leads to opposite alterations. Besides, USP7 deubiquitinates the X-linked inhibitor of apoptosis protein (XIAP). The USP7-induced increase in XIAP suppresses caspase 3 activity, leading to a reduction in tubulin cleavage and suppression of dendritic pruning. When USP7 is introduced into the brains of prenatal mice via in utero electroporation (IUE), it results in abnormal migration of newborn neurons and increased dendritic arborization. Importantly, intraventricular brain injection of AAV-USP7 in P0 mice leads to autistic-like phenotypes including aberrant social interactions, repetitive behaviors, as well as changes in somatosensory sensitivity. These findings provide new insights in USP7-related neurobiological functions and its implication in ASD.

11.
iScience ; 25(7): 104573, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789851

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heterogeneity, affecting one in 44 children in the United States. Recent genomic sequencing studies from autistic human individuals indicate that PARK2, a gene that has long been considered in the pathogenesis of Parkinson's disease, is involved in ASD. Here, we report that Prkn knockout (KO) mice demonstrate autistic-like behaviors including impaired social interaction, elevated repetitive behaviors, and deficits in communication. In addition, Prkn KO mice show reduced neuronal activity in the context of sociability in the prelimbic cortex. Cell morphological examination of layer 5 prelimbic cortical neurons shows a reduction in dendritic arborization and spine number. Furthermore, biochemistry and immunocytochemistry analyses reveal alterations in synapse density and the molecular composition of synapses. These findings indicate that Prkn is implicated in brain development and suggest the potential use of the Prkn KO mouse as a model for autism research.

12.
J Biol Chem ; 284(34): 23072-82, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19553660

RESUMO

Mitosis is an orchestration of dynamic interactions between spindle microtubules and chromosomes, which is mediated by protein structures that include the kinetochores, and other protein complexes present on chromosomes. PinX1 is a potent telomerase inhibitor in interphase; however, its function in mitosis is not well documented. Here we show that PinX1 is essential for faithful chromosome segregation. Deconvolution microscopic analyses show that PinX1 localizes to nucleoli and telomeres in interphase and relocates to the periphery of chromosomes and the outer plate of the kinetochores in mitosis. Our deletion analyses mapped the kinetochore localization domain of PinX1 to the central region and its chromosome periphery localization domain to the C terminus. Interestingly, the kinetochore localization of PinX1 is dependent on Hec1 and CENP-E. Our biochemical characterization revealed that PinX1 is a novel microtubule-binding protein. Our real time imaging analyses show that suppression of PinX1 by small interference RNA abrogates faithful chromosome segregation and results in anaphase chromatid bridges in mitosis and micronuclei in interphase, suggesting an essential role of PinX1 in chromosome stability. Taken together, the results indicate that PinX1 plays an important role in faithful chromosome segregation in mitosis.


Assuntos
Segregação de Cromossomos/fisiologia , Microtúbulos/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/genética , Proteínas do Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microscopia de Fluorescência , Mitose/genética , Mitose/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA Interferente Pequeno , Fuso Acromático/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Biochem Biophys Res Commun ; 384(1): 76-81, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19393617

RESUMO

Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression.


Assuntos
Pareamento Cromossômico , Mitose , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular , Cromossomos Humanos/metabolismo , Células HeLa , Humanos , Nucleolina
14.
Neurobiol Aging ; 75: 198-208, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30594047

RESUMO

Reactive astrogliosis and early synaptic degeneration are 2 characteristic hallmarks in Alzheimer's disease (AD) brains, but a direct link between the 2 events has not been established. Here, we show that cancerous inhibitor of PP2A (CIP2A), a cancerous protein with high expression level in astrocytes, is upregulated in patients with AD and 3xTg-AD transgenic mice. Overexpression of CIP2A in astrocytes through adeno-associated virus infection both in cultured cells and in mice brains results in activation of astrocytes, increased production of cytokines and Aß, and synaptic degeneration indicated by decreased levels of synaptic proteins, spine loss, and impairment in long-term potentiation. As a result of synaptic degeneration, CIP2A overexpression in astrocytes in vivo induces significant deficits in visual episodic memory detected by novel objective recognition test and spatial memory detected by Morris water maze. We conclude that CIP2A-promoted astrogliosis induces synaptic degeneration and cognitive deficits in AD.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Autoantígenos/metabolismo , Disfunção Cognitiva/metabolismo , Proteínas de Membrana/metabolismo , Memória Espacial/fisiologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autoantígenos/genética , Cognição , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas de Membrana/genética , Transtornos da Memória/metabolismo , Camundongos Transgênicos
15.
J Alzheimers Dis ; 62(4): 1789-1801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614651

RESUMO

As the primary mediator for synaptic transmission, AMPA receptors (AMPARs) are crucial for synaptic plasticity and higher brain functions. A downregulation of AMPAR expression has been indicated as one of the early pathological molecular alterations in Alzheimer's disease (AD), presumably via amyloid-ß (Aß). However, the molecular mechanisms leading to the loss of AMPARs remain less clear. We report that in primary neurons, application of Aß triggers AMPAR internalization accompanied with a decrease in cell-surface AMPAR expression. Importantly, in both Aß-treated neurons and human brain tissue from AD patients, we observed a significant decrease in total AMPAR amount and an enhancement in AMPAR ubiquitination. Consistent with facilitated receptor degradation, AMPARs show higher turnover rates in the presence of Aß. Furthermore, AD brain lysates and Aß-incubated neurons show increased expression of the AMPAR E3 ligase Nedd4 and decreased expression of AMPAR deubiquitinase USP46. Changes in these enzymes are responsible for the Aß-dependent AMPAR reduction. These findings indicate that AMPAR ubiquitination acts as the key molecular event leading to the loss of AMPARs and thus suppressed synaptic transmission in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Endopeptidases/metabolismo , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Cultura Primária de Células , Proteólise , Ratos , Ubiquitinação/fisiologia
16.
Cell Rep ; 24(3): 713-723, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021167

RESUMO

Protein phosphatase 2A (PP2A) inhibition causes hyperphosphorylation of tau and APP in Alzheimer's disease (AD). However, the mechanisms underlying the downregulation of PP2A activity in AD brain remain unclear. We demonstrate that Cancerous Inhibitor of PP2A (CIP2A), an endogenous PP2A inhibitor, is overexpressed in AD brain. CIP2A-mediated PP2A inhibition drives tau/APP hyperphosphorylation and increases APP ß-cleavage and Aß production. Increase in CIP2A expression also leads to tau mislocalization to dendrites and spines and synaptic degeneration. In mice, injection of AAV-CIP2A to hippocampus induced AD-like cognitive deficits and impairments in long-term potentiation (LTP) and exacerbated AD pathologies in neurons. Indicative of disease exacerbating the feedback loop, we found that increased CIP2A expression and PP2A inhibition in AD brains result from increased Aß production. In summary, we show that CIP2A overexpression causes PP2A inhibition and AD-related cellular pathology and cognitive deficits, pointing to CIP2A as a potential target for AD therapy.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autoantígenos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Transtornos da Memória/metabolismo , Sinapses/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células HEK293 , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Potenciação de Longa Duração , Transtornos da Memória/complicações , Transtornos da Memória/patologia , Camundongos Endogâmicos C57BL , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Ratos Sprague-Dawley , Sinapses/metabolismo
17.
Org Lett ; 16(8): 2122-5, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24684381

RESUMO

OvoA in ovothiol biosynthesis is a mononuclear non-heme iron enzyme catalyzing the oxidative coupling between histidine and cysteine. It can also catalyze the oxidative coupling between hercynine and cysteine, yet with a different regio-selectivity. Due to the potential application of this reaction for industrial ergothioneine production, in this study, we systematically characterized OvoA by a combination of three different assays. Our studies revealed that OvoA can also catalyze the oxidation of cysteine to either cysteine sulfinic acid or cystine. Remarkably, these OvoA-catalyzed reactions can be systematically modulated by a slight modification of one of its substrates, histidine.


Assuntos
Cisteína/análogos & derivados , Metilistidinas/metabolismo , Mycobacterium smegmatis/metabolismo , Betaína/análogos & derivados , Betaína/metabolismo , Catálise , Cisteína/química , Cisteína/metabolismo , Cisteína Dioxigenase/metabolismo , Heme/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Modelos Biológicos , Estrutura Molecular , Mycobacterium smegmatis/enzimologia , Ressonância Magnética Nuclear Biomolecular , Oxirredução
18.
Cell Cycle ; 8(9): 1433-43, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19342897

RESUMO

Accurate segregation of chromosome, initiated by abrupt and irreversible dissolution of sister-chromatid cohesion at anaphase, is crucial for the faithful inheritance of parental genomes during eukaryotic cell division. The dissolution of sister-chromatid cohesion is catalyzed by separase after the destruction of securin by the anaphase-promoting complex/cyclosome (APC/C). However, separase was localized to the mitotic centrosome, raising the question as how separase hydrolyzes sister-chromatid cohesion of centromere at the anaphase onset. Here we show that separase is associated with mitotic chromosomes and this association is regulated by Aurora B kinase. Using a panel of separase antibodies, we found that separase protein was accumulated in mitosis and degraded at the end of telophase. To study the spatiotemporal distribution of separase in mitosis, we carried out immunofluorescence microscopic analyses. Surprisingly, separase was found to be associated with mitotic chromosomes from prophase to metaphase and dissociated from the chromosomes in anaphase right after sister chromatids separation. Staining of isolated mitotic chromosomes from Nocodazole-arrested cells revealed that separase is concentrated at the centromeric cohesion. To examine if any mitotic kinases are responsible for chromosomal localization of separase in mitosis, we carried out RNAi-mediated knockdown and found that association of separase with mitotic chromosomes was a function of Aurora B. Consistent with the phenotype seen in the Aurora B-repressed cells, inhibition of Aurora B kinase by hersperadin prevents the association of separase with chromosomes. Our results suggest that Aurora B kinase activity helps coordinate the association of separase with chromosome and the initiation of sister-chromatid separation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/enzimologia , Endopeptidases/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Anticorpos , Aurora Quinase B , Aurora Quinases , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Células HeLa , Humanos , Transporte Proteico , Reprodutibilidade dos Testes , Separase , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA