Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0053924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809043

RESUMO

Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.


Assuntos
Antibacterianos , Baías , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/crescimento & desenvolvimento , Baías/microbiologia , Antibacterianos/farmacologia , Estudos Longitudinais , Maryland , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Vibrioses/microbiologia , Humanos
2.
Appl Environ Microbiol ; 89(6): e0030723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222620

RESUMO

Incidence of vibriosis is rising globally, with evidence that changing climatic conditions are influencing environmental factors that enhance growth of pathogenic Vibrio spp. in aquatic ecosystems. To determine the impact of environmental factors on occurrence of pathogenic Vibrio spp., samples were collected in the Chesapeake Bay, Maryland, during 2009 to 2012 and 2019 to 2022. Genetic markers for Vibrio vulnificus (vvhA) and Vibrio parahaemolyticus (tlh, tdh, and trh) were enumerated by direct plating and DNA colony hybridization. Results confirmed seasonality and environmental parameters as predictors. Water temperature showed a linear correlation with vvhA and tlh, and two critical thresholds were observed, an initial increase in detectable numbers (>15°C) and a second increase when maximum counts were recorded (>25°C). Temperature and pathogenic V. parahaemolyticus (tdh and trh) were not strongly correlated; however, the evidence showed that these organisms persist in oyster and sediment at colder temperatures. Salinity (10 to 15 ppt), total chlorophyll a (5 to 25 µg/L), dissolved oxygen (5 to 10 mg/L), and pH (8) were associated with increased abundance of vvhA and tlh. Importantly, a long-term increase in Vibrio spp. numbers was observed in water samples between the two collection periods, specifically at Tangier Sound (lower bay), with the evidence suggesting an extended seasonality for these bacteria in the area. Notably, tlh showed a mean positive increase that was ca. 3-fold overall, with the most significant increase observed during the fall. In conclusion, vibriosis continues to be a risk in the Chesapeake Bay region. A predictive intelligence system to assist decision makers, with respect to climate and human health, is warranted. IMPORTANCE The genus Vibrio includes pathogenic species that are naturally occurring in marine and estuarine environments globally. Routine monitoring for Vibrio species and environmental parameters influencing their incidence is critical to provide a warning system for the public when the risk of infection is high. In this study, occurrence of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Chesapeake Bay water, oysters, and sediment samples collected over a 13-year period was analyzed. The results provide a confirmation of environmental predictors for these bacteria, notably temperature, salinity, and total chlorophyll a, and their seasonality of occurrence. New findings refine environmental parameter thresholds of culturable Vibrio species and document a long-term increase in Vibrio populations in the Chesapeake Bay. This study provides a valuable foundation for development of predicative risk intelligence models for Vibrio incidence during climate change.


Assuntos
Ostreidae , Vibrioses , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Clorofila A , Ecossistema , Ostreidae/microbiologia , Vibrioses/epidemiologia , Água
3.
Can J Microbiol ; 68(2): 103-110, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34793252

RESUMO

Vibrio cholerae, an important waterborne pathogen, is a rod-shaped bacterium that naturally exists in aquatic environments. When conditions are unfavorable for growth, the bacterium can undergo morphological and physiological changes to assume a coccoid morphology. This stage in its life cycle is referred to as viable but non-culturable (VBNC) because VBNC cells do not grow on conventional bacteriological culture media. The current study compared polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to detect and identify VBNC V. cholerae. Because it is difficult to detect and identify VBNC V. cholerae, the results of the current study are useful in showing that LAMP is more sensitive and rapid than PCR in detecting and identifying non-culturable, coccoid forms of V. cholerae. Furthermore, the LAMP method is effective in detecting and identifying very low numbers of coccoid VBNC V. cholerae in environmental water samples, with the added benefit of being inexpensive to perform.


Assuntos
Vibrio cholerae O1 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Vibrio cholerae O1/genética
4.
Environ Microbiol ; 23(12): 7314-7340, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390611

RESUMO

Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.


Assuntos
Vibrioses , Vibrio , Meio Ambiente , Humanos , Incidência , Vibrio/classificação , Vibrio/patogenicidade , Vibrioses/epidemiologia , Vibrioses/transmissão
5.
Proc Natl Acad Sci U S A ; 112(21): E2813-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964331

RESUMO

Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea.


Assuntos
Fontes Hidrotermais/microbiologia , Vibrio/isolamento & purificação , Vibrio/patogenicidade , Evolução Molecular , Genoma Bacteriano , Humanos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Especificidade da Espécie , Vibrio/genética , Virulência/genética
6.
Proc Natl Acad Sci U S A ; 111(27): 9917-22, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958870

RESUMO

The seventh cholera pandemic caused by Vibrio cholerae O1 El Tor (ET) has been superseded in Asia and Africa by altered ET possessing the cholera toxin (CTX) gene of classical (CL) biotype. The CL biotype of V. cholerae was isolated, along with prototypic and altered ET, during the 1991 cholera epidemic in Mexico and subsequently remained endemic until 1997. Microbiological, molecular, and phylogenetic analyses of clinical and environmental V. cholerae isolated in Mexico between 1998 and 2008 revealed important genetic events favoring predominance of ET over CL and altered ET. V. cholerae altered ET was predominant after 1991 but not after 2000. V. cholerae strains isolated between 2001 and 2003 and a majority isolated in 2004 lacked CTX prophage (Φ) genes encoding CTX subunits A and B and repeat sequence transcriptional regulators of ET and CL biotypes: i.e., CTXΦ(-). Most CTXΦ(-) V. cholerae isolated in Mexico between 2001 and 2003 also lacked toxin coregulated pili tcpA whereas some carried either tcpA(ET) or a variant tcpA with noticeable sequence dissimilarity from tcpA(CL). The tcpA variants were not detected in 2005 after CTXΦ(+) ET became dominant. All clinical and environmental V. cholerae O1 strains isolated during 2005-2008 in Mexico were CTXΦ(+) ET, carrying an additional truncated CTXΦ instead of RS1 satellite phage. Despite V. cholerae CTXΦ(-) ET exhibiting heterogeneity in pulsed-field gel electrophoresis patterns, CTXΦ(+) ET isolated during 2004-2008 displayed homogeneity and clonal relationship with V. cholerae ET N16961 and V. cholerae ET isolated in Peru.


Assuntos
Prófagos/genética , Vibrio cholerae/isolamento & purificação , Análise por Conglomerados , Eletroforese em Gel de Campo Pulsado , Genoma Bacteriano , Humanos , México/epidemiologia , Dados de Sequência Molecular , Filogenia , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade
7.
J Clin Microbiol ; 53(1): 9-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339398

RESUMO

An occurrence of Vibrio cholerae non-O1/O139 gastroenteritis in the U.S. Gulf Coast is reported here. Genomic analysis revealed that the isolate lacked known virulence factors associated with the clinical outcome of a V. cholerae infection but did contain putative genomic islands and other accessory virulence factors. Many of these factors are widespread among environmental strains of V. cholerae, suggesting that there might be additional virulence factors in non-O1/O139 V. cholerae yet to be determined. Phylogenetic analysis revealed that the isolate belonged to a phyletic lineage of environmental V. cholerae isolates associated with sporadic cases of gastroenteritis in the Western Hemisphere, suggesting a need to monitor non-O1/O139 V. cholerae in the interest of public health.


Assuntos
Gastroenterite/microbiologia , Vibrioses/microbiologia , Vibrio cholerae não O1/classificação , Adulto , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional , Gastroenterite/diagnóstico , Ordem dos Genes , Genes Bacterianos , Genoma Bacteriano , Humanos , Masculino , Tipagem Molecular , Filogenia , Estados Unidos , Vibrioses/diagnóstico , Vibrio cholerae não O1/genética , Vibrio cholerae não O1/isolamento & purificação , Fatores de Virulência/genética
8.
Appl Environ Microbiol ; 81(6): 1909-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25556194

RESUMO

Non-O1/non-O139 Vibrio cholerae inhabits estuarine and coastal waters globally, but its clinical significance has not been sufficiently investigated, despite the fact that it has been associated with septicemia and gastroenteritis. The emergence of virulent non-O1/non-O139 V. cholerae is consistent with the recognition of new pathogenic variants worldwide. Oyster, sediment, and water samples were collected during a vibrio surveillance program carried out from 2009 to 2012 in the Chesapeake Bay, Maryland. V. cholerae O1 was detected by a direct fluorescent-antibody (DFA) assay but was not successfully cultured, whereas 395 isolates of non-O1/non-O139 V. cholerae were confirmed by multiplex PCR and serology. Only a few of the non-O1/non-O139 V. cholerae isolates were resistant to ampicillin and/or penicillin. Most of the isolates were sensitive to all antibiotics tested, and 77 to 90% carried the El Tor variant hemolysin gene hlyAET, the actin cross-linking repeats in toxin gene rtxA, the hemagglutinin protease gene hap, and the type 6 secretion system. About 19 to 21% of the isolates carried the neuraminidase-encoding gene nanH and/or the heat-stable toxin (NAG-ST), and only 5% contained a type 3 secretion system. None of the non-O1/non-O139 V. cholerae isolates contained Vibrio pathogenicity island-associated genes. However, ctxA, ace, or zot was present in nine isolates. Fifty-five different genotypes showed up to 12 virulence factors, independent of the source of isolation, and represent the first report of both antibiotic susceptibility and virulence associated with non-O1/non-O139 V. cholerae from the Chesapeake Bay. Since these results confirm the presence of potentially pathogenic non-O1/non-O139 V. cholerae, monitoring for total V. cholerae, regardless of serotype, should be done within the context of public health.


Assuntos
Baías/microbiologia , Sedimentos Geológicos/microbiologia , Ostreidae/microbiologia , Vibrio cholerae O1/isolamento & purificação , Vibrio cholerae não O1/isolamento & purificação , Fatores de Virulência/análise , Microbiologia da Água , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Genótipo , Maryland , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase Multiplex , Penicilinas/farmacologia , Sorotipagem , Vibrio cholerae O1/genética , Vibrio cholerae não O1/genética , Fatores de Virulência/genética , Resistência beta-Lactâmica
9.
Proc Natl Acad Sci U S A ; 109(29): E2010-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22711841

RESUMO

The millions of deaths from cholera during the past 200 y, coupled with the morbidity and mortality of cholera in Haiti since October 2010, are grim reminders that Vibrio cholerae, the etiologic agent of cholera, remains a scourge. We report the isolation of both V. cholerae O1 and non-O1/O139 early in the Haiti cholera epidemic from samples collected from victims in 18 towns across eight Arrondissements of Haiti. The results showed two distinct populations of V. cholerae coexisted in Haiti early in the epidemic. As non-O1/O139 V. cholerae was the sole pathogen isolated from 21% of the clinical specimens, its role in this epidemic, either alone or in concert with V. cholerae O1, cannot be dismissed. A genomic approach was used to examine similarities and differences among the Haitian V. cholerae O1 and V. cholerae non-O1/O139 strains. A total of 47 V. cholerae O1 and 29 V. cholerae non-O1/O139 isolates from patients and the environment were sequenced. Comparative genome analyses of the 76 genomes and eight reference strains of V. cholerae isolated in concurrent epidemics outside Haiti and 27 V. cholerae genomes available in the public database demonstrated substantial diversity of V. cholerae and ongoing flux within its genome.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Surtos de Doenças , Variação Genética , Genoma Bacteriano/genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Sequência de Bases , Haiti/epidemiologia , Humanos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Análise de Sequência de DNA , Especificidade da Espécie , Sequências de Repetição em Tandem/genética
10.
Emerg Infect Dis ; 20(1): 54-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24377372

RESUMO

Cholera remains a major public health problem. To compare the relative contribution of strains from the environment with strains isolated from patients during outbreaks, we performed multilocus variable tandem repeat analyses on samples collected during the 2010 and 2011 outbreak seasons in 2 geographically distinct areas of Bangladesh. A total of 222 environmental and clinical isolates of V. cholerae O1 were systematically collected from Chhatak and Mathbaria. In Chhatak, 75 of 79 isolates were from the same clonal complex, in which extensive differentiation was found in a temporally consistent pattern of successive mutations at single loci. A total of 59 isolates were collected from 6 persons; most isolates from 1 person differed by sequential single-locus mutations. In Mathbaria, 60 of 84 isolates represented 2 separate clonal complexes. The small number of genetic lineages in isolates from patients, compared with those from the environment, is consistent with accelerated transmission of some strains among humans during an outbreak.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Surtos de Doenças , Variação Genética , Vibrio cholerae/genética , Bangladesh/epidemiologia , Cólera/história , Genótipo , História do Século XXI , Humanos , Repetições Minissatélites , Tipagem de Sequências Multilocus , Estações do Ano , Vibrio cholerae/classificação
11.
Southeast Asian J Trop Med Public Health ; 45(6): 1354-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466421

RESUMO

A total of 124 V cholerae non-O1/non-O139 isolates were collected in Khon Kaen, Thailand from diarrheal patients, asymptomatic carriers and environmental water. The presence of virulence-associated and regulatory genes including ctxA, tcpA, zot, ace, ompU, stn, hlyA and toxR) were examined using multiplex PCR. The genomic diversity of the various V. cholerae isolates were differentiated using the random amplified polymorphic DNA (RAPD) method. Antimicrobial susceptibility was tested using disk diffusion. All of V. cholerae non-O/non-O139 isolates carried hlyA and toxR and none carried ctxA and tcpA. The zot, ace and both genes together were found in 1.6%, 4.7% and 4.7% of 64 clinical V. cholerae non-O1 isolates, respectively, while the environmental ones did not. The stn gene was found in 3.1% (2/64) of the clinical and 3.3% (2/60) of the environmental isolates. The RAPD patterns were differentiated into 45 types (A to 2S). RAPD type A (32.3%) was the most frequently found in both clinical and environmental V cholerae non-O1 strains (34.4% and 30.0%, respectively); indicating that there was a clonal relationship between some clinical and environmental isolates whereas almost all of the environmental isolates belonged to different clones. All strains were sensitive to ciprofloxacin and norfloxacin. The environmental isolates (30%) were more resistant than the clinical ones (21.9%). Resistance to sulfamethoxazole/trimethoprim and tetracycline among the clinical isolates occurred in 9.4% (6/64) in 2007, during which period the prevalence of V cholerae O1 increased. We conclude that V. cholerae non-O1/non-O139 from the aquatic environment are potentially pathogenic and this same aquatic environment may be a source of antimicrobial resistance in V. cholerae.


Assuntos
Antibacterianos/farmacologia , Vibrioses/microbiologia , Vibrio cholerae não O1/efeitos dos fármacos , Vibrio cholerae não O1/genética , Estudos de Coortes , Farmacorresistência Bacteriana , Microbiologia Ambiental , Humanos , Tailândia/epidemiologia
12.
Am J Trop Med Hyg ; 110(3): 518-528, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320317

RESUMO

Current modeling practices for environmental and sociological modulated infectious diseases remain inadequate to forecast the risk of outbreak(s) in human populations, partly due to a lack of integration of disciplinary knowledge, limited availability of disease surveillance datasets, and overreliance on compartmental epidemiological modeling methods. Harvesting data knowledge from virus transmission (aerosols) and detection (wastewater) of SARS-CoV-2, a heuristic score-based environmental predictive intelligence system was developed that calculates the risk of COVID-19 in the human population. Seasonal validation of the algorithm was uniquely associated with wastewater surveillance of the virus, providing a lead time of 7-14 days before a county-level outbreak. Using county-scale disease prevalence data from the United States, the algorithm could predict COVID-19 risk with an overall accuracy ranging between 81% and 98%. Similarly, using wastewater surveillance data from Illinois and Maryland, the SARS-CoV-2 detection rate was greater than 80% for 75% of the locations during the same time the risk was predicted to be high. Results suggest the importance of a holistic approach across disciplinary boundaries that can potentially allow anticipatory decision-making policies of saving lives and maximizing the use of available capacity and resources.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Estações do Ano , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Inteligência
13.
Appl Environ Microbiol ; 79(18): 5782-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872570

RESUMO

Vibrio cholerae, an environmental organism, is a facultative human pathogen. Here, we report the virulence profiles, comprising 18 genetic markers, of 102 clinical and 692 environmental V. cholerae strains isolated in Bangladesh between March 2004 and January 2006, showing the variability of virulence determinants within the context of public health.


Assuntos
Cólera/microbiologia , Microbiologia Ambiental , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Fatores de Virulência/genética , Bangladesh , Variação Genética , Humanos
14.
J Water Health ; 11(2): 333-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23708580

RESUMO

Microbial safety of recreational water is one of the major human public health issues in developing countries. Three water bodies, the Tbilisi Sea, Kumisi and Lisi lakes, in the South Caucasus region near Tbilisi, Georgia, were monitored in 2006-2009 to determine microbiological quality using standard methods. Microbial pollution indicators were determined in parallel with phytoplankton abundance and measurement of a number of physical-chemical parameters. Kumisi Lake, a brackish water body in an active agricultural area, appeared to be the most polluted, whereas the Tbilisi Sea, a freshwater reservoir was the least polluted. High values for fecal indicators in all three lakes in summer and early autumn were revealed. In our study, total enterococci counts (TEC) appeared to be a better indicator than either fecal or total coliform counts for the evaluation of fresh and brackish microbial water quality. We found significant correlation between total Vibrio counts and TEC for all three water bodies. Prevalence of somatic coliphages and V. cholerae-specific phages as additional water pollution indicator significantly correlated with abundance of the host bacteria. Particular phytoplankton groups in the lakes responded to the changes of fecal indicators; however, no correlation was observed between dominant zooplankton taxonomic groups and microbial parameters.


Assuntos
Lagos/microbiologia , Recreação , Praias , Clorofila , Clorofila A , Fezes/microbiologia , República da Geórgia , Saúde Pública , Estações do Ano
15.
Proc Natl Acad Sci U S A ; 107(49): 21134-9, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078967

RESUMO

Whether Vibrio mimicus is a variant of Vibrio cholerae or a separate species has been the subject of taxonomic controversy. A genomic analysis was undertaken to resolve the issue. The genomes of V. mimicus MB451, a clinical isolate, and VM223, an environmental isolate, comprise ca. 4,347,971 and 4,313,453 bp and encode 3,802 and 3,290 ORFs, respectively. As in other vibrios, chromosome I (C-I) predominantly contains genes necessary for growth and viability, whereas chromosome II (C-II) bears genes for adaptation to environmental change. C-I harbors many virulence genes, including some not previously reported in V. mimicus, such as mannose-sensitive hemagglutinin (MSHA), and enterotoxigenic hemolysin (HlyA); C-II encodes a variant of Vibrio pathogenicity island 2 (VPI-2), and Vibrio seventh pandemic island II (VSP-II) cluster of genes. Extensive genomic rearrangement in C-II indicates it is a hot spot for evolution and genesis of speciation for the genus Vibrio. The number of virulence regions discovered in this study (VSP-II, MSHA, HlyA, type IV pilin, PilE, and integron integrase, IntI4) with no notable difference in potential virulence genes between clinical and environmental strains suggests these genes also may play a role in the environment and that pathogenic strains may arise in the environment. Significant genome synteny with prototypic pre-seventh pandemic strains of V. cholerae was observed, and the results of phylogenetic analysis support the hypothesis that, in the course of evolution, V. mimicus and V. cholerae diverged from a common ancestor with a prototypic sixth pandemic genomic backbone.


Assuntos
Genômica/métodos , Vibrio mimicus/genética , Cromossomos Bacterianos , Genes Bacterianos , Especiação Genética , Genoma Bacteriano , Sintenia , Vibrio cholerae/genética
16.
mBio ; : e0052923, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962395

RESUMO

Climate change raises an old disease to a new level of public health threat. The causative agent, Vibrio cholerae, native to aquatic ecosystems, is influenced by climate and weather processes. The risk of cholera is elevated in vulnerable populations lacking access to safe water and sanitation infrastructure. Predictive intelligence, employing mathematical algorithms that integrate earth observations and heuristics derived from microbiological, sociological, and weather data, can provide anticipatory decision-making capabilities to reduce the burden of cholera and save human lives. An example offered here is the recent outbreak of cholera in Malawi, predicted in advance by such algorithms.

17.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808627

RESUMO

Members of the genus Vibrio are ecologically significant bacteria native to aquatic ecosystems globally, and a few can cause diseases in humans. Vibrio-related illnesses have increased in recent years, primarily attributed to changing environmental conditions. Therefore, understanding the role of environmental factors in the occurrence and growth of pathogenic strains is crucial for public health. Water, oyster, and sediment samples were collected between 2009 and 2012 from Chester River and Tangier Sound sites in Chesapeake Bay, Maryland, USA, to investigate the relationship between water temperature, salinity, and chlorophyll with the incidence and distribution of Vibrio parahaemolyticus (VP) and Vibrio vulnificus (VV). Odds ratio analysis was used to determine association between the likelihood of VP and VV presence and these environmental variables. Results suggested that water temperature threshold of 20°C or higher was associated with an increased risk, favoring the incidence of Vibrio spp. A significant difference in salinity was observed between the two sampling sites, with distinct ranges showing high odds ratio for Vibrio incidence, especially in water and sediment, emphasizing the impact of salinity on VP and VV incidence and distribution. Notably, salinity between 9-20 PPT consistently favored the Vibrio incidence across all samples. Relationship between chlorophyll concentrations and VP and VV incidence varied depending on sample type. However, chlorophyll range of 0-10 µg/L was identified as critical in oyster samples for both vibrios. Analysis of odds ratios for water samples demonstrated consistent outcomes across all environmental parameters, indicating water samples offer a more reliable indicator of Vibrio spp. incidence.

18.
mBio ; : e0147623, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37931127

RESUMO

Changing climatic conditions influence parameters associated with the growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp. infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections was reported post Hurricane Ian, a category five storm that made landfall in Florida on 28 September 2022. During October 2022, water and oyster samples were collected from three stations in Lee County in an area significantly impacted by Ian. Vibrio spp. were isolated, and whole-genome sequencing and phylogenetic analysis were done, with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight into pathogenic strains circulating in the environment. Metagenomic analysis of water samples provided insight with respect to human health-related factors, notably the detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resistance genes, and mobile genetic elements, including the SXT/R391 family of integrative conjugative elements. Environmental parameters were monitored as part of a long-term time series analysis done using satellite remote sensing. In addition to anomalous rainfall and storm surge, changes in sea surface temperature and chlorophyll concentration during and after Ian favored the growth of Vibrio spp. In conclusion, genetic analysis coupled with environmental data and remote sensing provides useful public health information and, hence, constitute a valuable tool to proactively detect and characterize environmental pathogens, notably vibrios. These data can aid the development of early warning systems by yielding a larger source of information for public health during climate change. Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.

19.
Nat Commun ; 14(1): 1154, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859426

RESUMO

In 2022, one of its worst cholera outbreaks began in Bangladesh and the icddr,b Dhaka hospital treated more than 1300 patients and ca. 42,000 diarrheal cases from March-1 to April-10, 20221. Here, we present genomic attributes of V. cholerae O1 responsible for the 2022 Dhaka outbreak and 960 7th pandemic El Tor (7PET) strains from 88 countries. Results show strains isolated during the Dhaka outbreak cluster with 7PET wave-3 global clade strains, but comprise subclade BD-1.2, for which the most recent common ancestor appears to be that responsible for recent endemic cholera in India. BD-1.2 strains are present in Bangladesh since 2016, but not establishing dominance over BD-2 lineage strains2 until 2018 and predominantly associated with endemic cholera. In conclusion, the recent shift in lineage and genetic attributes, including serotype switching of BD-1.2 from Ogawa to Inaba, may explain the increasing number of cholera cases in Bangladesh.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Bangladesh , Genômica , Surtos de Doenças , Fatores de Transcrição
20.
Appl Environ Microbiol ; 78(20): 7249-57, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865080

RESUMO

Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST.


Assuntos
Sedimentos Geológicos/microbiologia , Ostreidae/microbiologia , Água do Mar/microbiologia , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio vulnificus/crescimento & desenvolvimento , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Carbono/análise , Clorofila/análise , Clorofila A , Proteínas Hemolisinas/genética , Dinâmica Populacional , Salinidade , Água do Mar/química , Estados Unidos , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA