Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 210(12): 1974-1989, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163338

RESUMO

The gasdermins are a family of pore-forming proteins that has recently been suggested to play a central role in pyroptosis. In this study, we describe the novel roles of gasdermins in the biogenesis of apoptotic cell-derived exosomes. In apoptotic human HeLa and HEK293 cells, GSDMA, GSDMC, GSDMD, and GSDME increased the release of apoptotic exosomes. GSDMB and DFNB59, in contrast, negatively affected the release of apoptotic exosomes. GSDME at its full-length and cleaved forms was localized in the exosomes and exosomal membrane. Full-length and cleaved forms of GSDME are suggested to increase Ca2+ influx to the cytosol through endosomal pores and thus increase the biogenesis of apoptotic exosomes. In addition, the GSDME-mediated biogenesis of apoptotic exosomes depended on the ESCRT-III complex and endosomal recruitment of Ca2+-dependent proteins, that is, annexins A2 and A7, the PEF domain family proteins sorcin and grancalcin, and the Bro1 domain protein HD-PTP. Therefore, we propose that the biogenesis of apoptotic exosomes begins when gasdermin-mediated endosomal pores increase cytosolic Ca2+, continues through the recruitment of annexin-sorcin/grancalcin-HD-PTP, and is completed when the ESCRT-III complex synthesizes intraluminal vesicles in the multivesicular bodies of dying cells. Finally, we found that GSDME-bearing tumors released apoptotic exosomes to induce inflammatory responses in the in vivo mouse 4T1 orthotropic model of BALB/c breast cancer. The data indicate that the switch from apoptosis to pyroptosis could drive the transfer of mass signals to nearby or distant living cells and tissues by way of extracellular vesicles, and that gasdermins play critical roles in that process.

2.
Proc Natl Acad Sci U S A ; 115(50): E11721-E11730, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30463946

RESUMO

Recent research has led to contradictory notions regarding the conventional theory that apoptotic cell death can evoke inflammatory or immunogenic responses orchestrated by released damage-associated patterns (DAMPs). By inducing IL-1ß from bone marrow-derived macrophages in an effort to determine the inflammatory mediators released from apoptotic cells, we found that exosomal fractions called "apoptotic exosome-like vesicles" (AEVs) prepared from apoptotic-conditioned medium were the main inflammatory factors. These AEVs showed characteristics of exosomes in their size, density, morphology, and protein expression but had unique marker proteins, sphingosine-1-phosphate receptors 1 and 3 (S1PR1 and 3). Their biogenesis was completely dependent on cellular sphingosine-1-phosphate (S1P)/S1PRs signaling from multiple fine spindles of plasma membrane accompanied by F-actin, S1PR1, S1PR3, and CD63 at the early apoptotic phase and progressing to the maturation of F-actin-guided multivesicular endosomes mediated by Gßγ subunits of S1PRs downstream. S1P-loaded S1PRs on AEVs were critical factors for inducing IL-1ß via NF-κB transcriptional factor and p38 MAPK, possibly through the RHOA/NOD2 axis, in differentiating macrophages. The AEVs induced genes of proinflammatory cytokines, chemokines, and mediators in both in vitro and in vivo models. In conclusion, AEVs could be key inflammatory mediators, acting as DAMPs that could explain the pathogeneses of various chronic inflammations, autoimmune diseases, or cancers in the future.


Assuntos
Alarminas/metabolismo , Apoptose/fisiologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Meios de Cultivo Condicionados , Células HeLa , Humanos , Interleucina-1beta/biossíntese , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Exp Mol Med ; 52(1): 1-6, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915368

RESUMO

Apoptosis, a type of programmed cell death that plays a key role in both healthy and pathological conditions, releases extracellular vesicles such as apoptotic bodies and microvesicles, but exosome release due to apoptosis is not yet commonly accepted. Here, the reports demonstrating the presence of apoptotic exosomes and their roles in inflammation and immune responses are summarized, together with a general summary of apoptosis and extracellular vesicles. In conclusion, apoptosis is not just a 'silent' type of cell death but an active form of communication from dying cells to live cells through exosomes.


Assuntos
Apoptose/imunologia , Morte Celular/imunologia , Micropartículas Derivadas de Células/imunologia , Exossomos/imunologia , Animais , Vesículas Extracelulares/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA