RESUMO
BACKGROUND: Development of rapid diagnostic tests for tuberculosis is a global priority. A whole proteome screen identified Mycobacterium tuberculosis antigens associated with serological responses in tuberculosis patients. We used World Health Organization (WHO) target product profile (TPP) criteria for a detection test and triage test to evaluate these antigens. METHODS: Consecutive patients presenting to microscopy centers and district hospitals in Peru and to outpatient clinics at a tuberculosis reference center in Vietnam were recruited. We tested blood samples from 755 HIV-uninfected adults with presumptive pulmonary tuberculosis to measure IgG antibody responses to 57 M. tuberculosis antigens using a field-based multiplexed serological assay and a 132-antigen bead-based reference assay. We evaluated single antigen performance and models of all possible 3-antigen combinations and multiantigen combinations. RESULTS: Three-antigen and multiantigen models performed similarly and were superior to single antigens. With specificity set at 90% for a detection test, the best sensitivity of a 3-antigen model was 35% (95% confidence interval [CI], 31-40). With sensitivity set at 85% for a triage test, the specificity of the best 3-antigen model was 34% (95% CI, 29-40). The reference assay also did not meet study targets. Antigen performance differed significantly between the study sites for 7/22 of the best-performing antigens. CONCLUSIONS: Although M. tuberculosis antigens were recognized by the IgG response during tuberculosis, no single antigen or multiantigen set performance approached WHO TPP criteria for clinical utility among HIV-uninfected adults with presumed tuberculosis in high-volume, urban settings in tuberculosis-endemic countries.
Assuntos
Antígenos de Bactérias/imunologia , Imunoglobulina G/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia , Adolescente , Adulto , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Peru , Reprodutibilidade dos Testes , Testes Sorológicos/métodos , Testes Sorológicos/normas , Tuberculose Pulmonar/epidemiologia , Adulto JovemRESUMO
Antimicrobial residues found to be present in milk can have both health and economic impacts. For these reasons, the widespread routine testing of milk is required. Due to delays with sample handling and test scheduling, laboratory-based tests are not always suited for making decisions about raw material intake and product release, especially when samples require shipping to a central testing facility. Therefore, rapid on-site screening tests that can produce results within a matter of minutes are required to facilitate rapid intake and product release processes. Such tests must be simple for use by non-technical staff. There is increasing momentum towards the development and implementation of multiplexing tests that can detect a range of important antimicrobial residues simultaneously. A simple in situ multiplexed planar waveguide device that can simultaneously detect chloramphenicol, streptomycin and desfuroylceftiofur in raw dairy milk, without sample preparation, has been developed. Samples are simply mixed with antibody prior to an aliquot being passed through the detection cartridge for 5 min before reading on a field-deployable portable instrument. Multiplexed calibration curves were produced in both buffer and raw milk. Buffer curves, for chloramphenicol, streptomycin and desfuroylceftiofur, showed linear ranges (inhibitory concentration (IC)20-IC80) of 0.1-0.9, 3-129 and 12-26 ng/ml, whilst linear range in milk was 0.13-0.74, 11-376 and 2-12 ng/ml, respectively, thus meeting European legislated concentration requirements for both chloramphenicol and streptomycin, in milk, without the need for any sample preparation. Desfuroylceftiofur-contaminated samples require only simple sample dilution to bring positive samples within the range of quantification. Assay repeatability and reproducibility were lower than 12 coefficient of variation (%CV), whilst blank raw milk samples (n = 9) showed repeatability ranging between 4.2 and 8.1%CV when measured on all three calibration curves. Graphical Abstract MBio SnapEsi reader and cartridge.
Assuntos
Anti-Infecciosos/análise , Cefalosporinas/análise , Cloranfenicol/análise , Contaminação de Alimentos/análise , Leite/química , Estreptomicina/análise , Animais , Antibacterianos/análise , Bovinos , Análise de Alimentos/economia , Análise de Alimentos/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Fatores de TempoRESUMO
Photoaptamers are single-stranded nucleic acids selected for their high affinity to specific proteins of interest. Photoaptamer microarrays capture and quantify proteins from complex samples using a unique protocol that leverages both high-affinity capture with covalent retention of analytes. The initial capture of proteins from solution is similar to the well-known antibody capture, but the "secondary binding event" affected by photoaptamers is a covalent crosslink between the photoaptamer capture agent and the protein analyte. The nature of this specific covalent reaction allows a unique microarray processing that is described in detail in this chapter.
Assuntos
Luz , Ácidos Nucleicos/metabolismo , Análise Serial de Proteínas/métodos , Reagentes de Ligações Cruzadas/metabolismo , Endostatinas/metabolismo , Corantes Fluorescentes/metabolismo , Análise Serial de Proteínas/instrumentação , Ligação ProteicaRESUMO
Multiplexed photoaptamer-based arrays that allow for the simultaneous measurement of multiple proteins of interest in serum samples are described. Since photoaptamers covalently bind to their target analytes before fluorescent signal detection, the arrays can be vigorously washed to remove background proteins, providing the potential for superior signal-to-noise ratios and lower limits of quantification in biological matrices. Data are presented here for a 17-plex photoaptamer array exhibiting limits of detection below 10 fM for several analytes including interleukin-16, vascular endothelial growth factor, and endostatin and able to measure proteins in 10% serum samples. The assays are simple, scalable, and reproducible. Affinity of the capture reagent is shown to be directly correlated to the limit of detection for the analyte on the array.