Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(65): e202302482, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37639230

RESUMO

The crystal structure of a commercially available anthracene derivative, anthracene-9-thiocarboxamide, is reported here for the first time. The compound undergoes a [4+4] cycloaddition in the solid state to afford facile synthesis of the cycloadduct (CA). The cycloaddition is also reversible in the solid state using heat or mechanical force. Due to the presence of unpaired, strong hydrogen-bond donor atoms on the CA, significant solvatomorphism is achieved, and components of the solvatomorphs self-assemble into four different classes of supramolecular structures. The CA readily crystallizes with a variety of structurally-diverse solvents including those containing oxygen-, nitrogen-, or pi-acceptors. Some of the solvents the CA crystallized with include thiophene, benzene, and the three xylene isomers; thus, the CA was employed in industrially-relevant solvent separation. However, in competition studies, the CA did not exhibit selectivity. Lastly, it is demonstrated that the CA crystallizes with vinyl-containing monomers and is currently the only compound that crystallizes with both widely used monomers 4-vinylpyridine and styrene. Solid-state complexation of the CA with the monomers affords over a 50 °C increase in the monomer's thermal stabilities. The strategy of designing molecules with unused donors can be applied to achieve separations or volatile liquid stabilization.

2.
Angew Chem Int Ed Engl ; 62(33): e202306198, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37369627

RESUMO

Achieving substantial anisotropic thermal expansion (TE) in solid-state materials is challenging as most materials undergo volumetric expansion upon heating. Here, we describe colossal, anisotropic TE in crystals of an organic compound functionalized with two azo groups. Interestingly, the material exhibits distinct and switchable TE behaviors within different temperature regions. At high temperature, two-dimensional, area zero TE and colossal, positive linear TE (α=211 MK-1 ) are attained due to dynamic motion, while at low temperature, moderate positive TE occurs in all directions. Investigation of the solid-state motion showed the change in enthalpy and entropy are quite different in the two temperature regions and solid-state NMR experiments support motion in the solid. Cycling experiments demonstrate that the solid-state motions and TE behaviors are completely reversible. These results reveal strategies for designing significant anisotropic and switchable behaviors in solid-state materials.

3.
J Org Chem ; 87(21): 14953-14956, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36257059

RESUMO

A convenient, high-yielding, and scalable synthetic approach to the construction of 4'-vinylbenzocrown ethers has been developed, which employs a decarboxylation and cyclization strategy. Using this method, a wide-ranging class of vinylbenzocrown ethers can be efficiently obtained. The identity of the crown ethers was further established using single-crystal X-ray diffraction studies. Two of the vinylbenzocrown ethers crystallize with water, affording infinite supramolecular assemblies containing hydrogen-bonded water molecules.


Assuntos
Éteres de Coroa , Éteres de Coroa/química , Cristalografia por Raios X , Ciclização , Água
4.
Angew Chem Int Ed Engl ; 61(26): e202202708, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35347837

RESUMO

Control over thermal expansion (TE) behaviors in solid materials is often accomplished by modifying the molecules or intermolecular interactions within the solid. Here, we use a mixed cocrystal approach and incorporate molecules with similar chemical structures, but distinct functionalities. Development of mixed cocrystals is at a nascent stage, and here we describe the first mixed cocrystals sustained by one-dimensional halogen bonds. Within each mixed cocrystal, the halogen-bond donor is fixed, while the halogen-bond acceptor site contains two molecules in a variable ratio. X-ray diffraction demonstrates isostructurality across the series, and SEM-EDS shows equal distribution of heavy atoms and similar atomic compositions across all mixed cocrystals. The acceptor molecules differ in their ability to undergo dynamic motion in the solid state. The synthetic equivalents of motion capable and incapable molecules were systematically varied to yield direct tunabililty in TE behavior.

5.
Chemistry ; 27(66): 16329-16333, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34555229

RESUMO

The solution and mechanochemical synthesis of two cocrystals that differ in the stoichiometric ratio of the components (stoichiometric cocrystals) is reported. The components in the stoichiometric cocrystals interact through hydrogen or hydrogen/halogen bonds and differ in π-stacking arrangements. The difference in structure and noncovalent interactions affords dramatically different thermal expansion behaviors in the two cocrystals. At certain molar ratios, the cocrystals are obtained concomitantly; however, by varying the ratios, a single stoichiometric cocrystal is achieved using mechanochemistry.

6.
Chemistry ; 26(9): 1928-1930, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31696566

RESUMO

A novel macrocyclic host molecule was synthesized that forms in a single step from commercially available starting materials. The core of the macrocycle backbone possesses two quinone rings and, thus, it is redox-active. Host-guest binding involving the clip-shaped cavity indicates selective binding of pyridine N-oxides based on the electron density of and steric bulk around the anionic oxygen.

7.
J Am Chem Soc ; 138(38): 12336-9, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27592813

RESUMO

Dispersions of particles onto which reactive groups are bound give rise to inhomogeneous concentrations that may afford fundamentally different chemical behavior compared to the same molecular species dissolved in homogeneous solution. An example is bimolecular reactivity of complementary-functionalized particles, whereby interparticle contact is expected to promote fast kinetics localized to the interface, while exhibiting essentially no reactivity elsewhere. Such materials may exhibit unique properties analogous to blood clotting and thereby be useful in self-healing applications. Here, we demonstrate a radical polymerization reaction whose initiation is controlled by the physical proximity of two complementary co-initiators bound to a substrate and/or polymer beads. Polymerization of the surrounding acrylate monomer only occurs when interfaces functionalized with dimethylaniline encounter interfaces bearing benzoyl peroxide. At the interface of the complementary-functionalized beads, polymerization affords a "clot-like" scaffold of beads and polymer. Interestingly, such a scaffold is only attained when the beads are in a quiescent state. These findings open the way to the design of spatially controlled dual initiator systems and novel self-healing strategies and motifs.

8.
J Am Chem Soc ; 137(40): 12768-71, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26407029

RESUMO

A correlation between Young's modulus, as determined by using nanoindentation atomic force microscopy (AFM), and atomic polarizability is observed for members of a series of cocrystals based on systematic changes to one cocrystal component. Time domain spectroscopy over terahertz frequencies (THz-TDS) is used for the first time to directly measure the polarizability of macro- and nanosized organic solids. Cocrystals of both macro- and nanodimensions with highly polarizable atoms result in softer solids and correspondingly higher polarizabilities.

9.
J Am Chem Soc ; 136(19): 6778-81, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24754570

RESUMO

Ag(I) is used to form a π-stacked metal-organic solid that exhibits remarkably high electrical conductivity. The solid undergoes a single-crystal-to-single-crystal [2+2] photodimerization to generate a 1D coordination polymer with over 40% higher conductivity. The Ag(I) complex represents the first example of an increase in conductivity resulting from a [2+2] photodimerization. Density of states calculations show a higher contribution from Ag(I) ions to the valence band in the photodimerized solid, supporting the increase in conductivity.

10.
Chem Commun (Camb) ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828748

RESUMO

We demonstrate thermosalient behavior in anthracene-9-thiocarboxamide. Upon cooling, the crystalline material spontaneously fractures and jumps. Strong anisotropic thermal expansion precedes thermosalience, and the combination of hydrogen bonds and weaker interlayer interactions affords the macroscopic response. By incorporating structural moieties from different classes of thermosalient solids and using an underexplored supramolecular synthon, a dynamic, multi-functional material is achieved.

11.
IUCrJ ; 10(Pt 6): 635-637, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37860977

RESUMO

This commentary discusses the design of stimuli-responsive materials, specifically, light-responsive dithienylethene-based compounds. Recent progress in predicting photoactivity using a combination of theory and crystal structure landscape experiments is highlighted.

12.
Chem Commun (Camb) ; 59(50): 7779-7782, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37264668

RESUMO

Salification of the drug trimethoprim with enantiopure D- or L-lactic acid afforded salts with up to five times improved solubility. Both salts are polymorphic and we demonstrate fully reversible interconversion (cycling) between the drug polymorphs using mechanochemistry and slurry methods. We show drug polymorph interconversion requires both solvent contact and mechanical force, revealing strategies for cycling between solid material forms.

13.
IUCrJ ; 9(Pt 1): 31-42, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35059207

RESUMO

A series of aromatic organic molecules functionalized with different halogen atoms (I/ Br), motion-capable groups (olefin, azo or imine) and molecular length were designed and synthesized. The molecules self-assemble in the solid state through halogen bonding and exhibit molecular packing sustained by either herringbone or face-to-face π-stacking, two common motifs in organic semiconductor molecules. Interestingly, dynamic pedal motion is only achieved in solids with herringbone packing. On average, solids with herringbone packing exhibit larger thermal expansion within the halogen-bonded sheets due to motion occurrence and molecular twisting, whereas molecules with face-to-face π-stacking do not undergo motion or twisting. Thermal expansion along the π-stacked direction is surprisingly similar, but slightly larger for the face-to-face π-stacked solids due to larger changes in π-stacking distances with temperature changes. The results speak to the importance of crystal packing and intermolecular interaction strength when designing aromatic-based solids for organic electronics applications.

14.
Chem ; 8(2): 299-311, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35128144

RESUMO

The international Women in Supramolecular Chemistry network believes that taking an area-specific approach effectively supports equality, diversity, and inclusion. Science lacks diversity, and this is intersectional. We share effects of coronavirus disease 2019 (COVID-19) by triangulating findings from an online survey, a collaborative autoethnography, and reflective group research meetings. We show how qualitative research with the community offers insights into challenges and supports individuals, and we demonstrate that research leaders have often taken responsibility for their teams' mental health and well-being at the cost of their own.

15.
Front Chem ; 9: 793870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127646

RESUMO

The number and concentration of micropollutants in aqueous environments are increasing. Two such micropollutants include the pharmaceutical, propranolol hydrochloride, and dye intermediate, 2-naphthol. Here, we describe the synthesis of both linear and crosslinked pyridine-functionalized copolymers that bind and remove propranolol hydrochloride and 2-naphthol from water solutions. Propranolol hydrochloride and 2-naphthol both contain hydrogen-bond-donor groups, and the pyridine moiety on the polymer acts as a hydrogen-bond acceptor to facilitate removal. Copolymers with different amounts of pyridine comonomer are synthesized, and as the amount of the pyridine comonomer is increased, the ability of the polymer to bind and remove the contaminant also increases. The concentrations of propranolol hydrochloride and 2-naphthol decreased by approximately 20-40% and 60-88%, respectively, depending on the polymer type that is used in the binding experiment. A control polymer was synthesized by using styrene in place of the pyridine monomer. In analogous binding experiments, the styrene polymer decreases the concentration of propranolol hydrochloride by 2% and 2-naphthol by 26%. Thus, the binding effectiveness is significantly reduced when the hydrogen-bond-acceptor group is not present on the polymer. We also show that the best performing crosslinked pyridine-functionalized polymer is reusable. Overall, these polymer adsorbents demonstrate the potential for removal of micropollutants from water.

16.
Research (Wash D C) ; 2021: 3565791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33629070

RESUMO

Conjugated polymers and oligomers have great potentials in various fields, especially in materials and biological sciences because of their intriguing electronic and optoelectronic properties. In recent years, the through-space conjugation system has emerged as a new assembled pattern of multidimensional polymers. Here, a novel series of structurally condensed multicolumn/multilayer 3D polymers and oligomers have been designed and synthesized through one-pot Suzuki polycondensation (SPC). The intramolecularly stacked arrangement of polymers can be supported by either X-ray structural analysis or computational analysis. In all cases, polymers were obtained with modest to good yields, as determined by GPC and 1H-NMR. MALDI-TOF analysis has proven the speculation of the step-growth process of this polymerization. The computational study of ab initio and DFT calculations based on trimer and pentamer models gives details of the structures and the electronic transition. Experimental results of optical and AIE research confirmed by calculation indicates that the present work would facilitate the research and applications in materials.

17.
Chem Sci ; 11(29): 7701-7707, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32953037

RESUMO

Controlling thermal expansion (TE) behaviors of organic materials is challenging because several mechanisms can govern TE, such as noncovalent interaction strength and structural motions. Here, we report the first demonstration of tuning TE within organic solids by using a mixed cocrystal approach. The mixed cocrystals contain three unique molecules, two of which are present in variable ratios. These two molecules either lack or exhibit the ability to undergo molecular motion in the solid state. Incorporation of higher ratios of motion-capable molecules results in larger, positive TE along the motion direction. Addition of a motion-incapable molecule affords solids that undergo less TE. Fine-tuned TE behavior was attained by systematically controlling the ratio of motion-capable and -incapable molecules in each solid.

18.
Chem Commun (Camb) ; 55(22): 3258-3261, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30810139

RESUMO

We investigate a previously unobserved phase transition in an organic co-crystal containing the olefin trans-1,2-bis(4-pyridyl)ethylene. The olefin undergoes molecular motion in the crystalline state, and converts from a disordered to ordered phase upon cooling. Ordering causes a unit cell change to occur via a reversible single-crystal-to-single-crystal (SCSC) transformation. The ordered phase is only accessed via slow cooling; flash cooling locks the crystal in a kinetically trapped, disordered state, and SCSC reversibility is lost. The common practice of flash cooling may inhibit access to thermodynamic products and unique phases.

19.
Chem Commun (Camb) ; 55(53): 7639-7642, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31198914

RESUMO

We describe an unexpected, cyclic supramolecular complex that results from self-assembly of the nonsteroidal anti-inflammatory drug, diclofenac and 4,4'-azopyridine. The cycles self-assemble into 1D columns occupied by solvent, which can be removed at elevated temperatures (>100 °C) while retaining crystallinity. The complex exhibits solvent exchange ability that occurs through crystal-to-crystal transformations. Finally, the complex can be synthesized using mechanochemistry. Materials exhibiting the structural framework and robustness described here could be applied to removal of hazardous materials or undesirable solvents.


Assuntos
Anti-Inflamatórios não Esteroides/química , Diclofenaco/química , Anti-Inflamatórios não Esteroides/síntese química , Cristalografia por Raios X , Diclofenaco/síntese química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular
20.
R Soc Open Sci ; 5(6): 180564, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30110449

RESUMO

The design, synthesis and property characterization of new functional materials has garnered interest in a variety of fields. Materials that are capable of recognizing and binding with small molecules have applications in sensing, sequestration, delivery and property modification. Specifically, recognition of pharmaceutical compounds is of interest in each of the aforementioned application areas. Numerous pharmaceutical compounds comprise functional groups that are capable of engaging in hydrogen-bonding interactions; thus, materials that are able to act as hydrogen-bond receptors are of significant interest for these applications. In this review, we highlight some crystalline and polymeric materials that recognize and engage in hydrogen-bonding interactions with pharmaceuticals or small biomolecules. Moreover, as pharmaceuticals often exhibit multiple hydrogen-bonding sites, many donor/acceptor molecules have been specifically designed to interact with the drug via such multiple-point hydrogen bonds. The formation of multiple hydrogen bonds not only increases the strength of the interaction but also affords unique hydrogen-bonded architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA