Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharmacol ; 92(5): 564-575, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28830914

RESUMO

N-acetyl-l-cysteine (NAC) exhibits protective properties in brain injury models and has undergone a number of clinical trials. Most studies of NAC have focused on neurons. However, neuroprotection may be complemented by the protection of astrocytes because healthier astrocytes can better support the viability of neurons. Here, we show that NAC can protect astrocytes against protein misfolding stress (proteotoxicity), the hallmark of neurodegenerative disorders. Although NAC is thought to be a glutathione precursor, NAC protected primary astrocytes from the toxicity of the proteasome inhibitor MG132 without eliciting any increase in glutathione. Furthermore, glutathione depletion failed to attenuate the protective effects of NAC. MG132 elicited a robust increase in the folding chaperone heat shock protein 70 (Hsp70), and NAC mitigated this effect. Nevertheless, three independent inhibitors of Hsp70 function ablated the protective effects of NAC, suggesting that NAC may help preserve Hsp70 chaperone activity and improve protein quality control without need for Hsp70 induction. Consistent with this view, NAC abolished an increase in ubiquitinated proteins in MG132-treated astrocytes. However, NAC did not affect the loss of proteasome activity in response to MG132, demonstrating that it boosted protein homeostasis and cell viability without directly interfering with the efficacy of this proteasome inhibitor. The thiol-containing molecules l-cysteine and d-cysteine both mimicked the protective effects of NAC, whereas the thiol-lacking molecule N-acetyl-S-methyl-l-cysteine failed to exert protection or blunt the rise in ubiquitinated proteins. Collectively, these findings suggest that the thiol group in NAC is required for its effects on glial viability and protein quality control.


Assuntos
Acetilcisteína/farmacologia , Astrócitos/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Glutationa , Dobramento de Proteína/efeitos dos fármacos , Animais , Astrócitos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/fisiologia , Relação Dose-Resposta a Droga , Feminino , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/fisiologia , Leupeptinas/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley
2.
Hippocampus ; 26(8): 980-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26934478

RESUMO

The dual-hit hypothesis of neurodegeneration states that severe stress sensitizes vulnerable cells to subsequent challenges so that the two hits are synergistic in their toxic effects. Although the hippocampus is vulnerable to a number of neurodegenerative disorders, there are no models of synergistic cell death in hippocampal neurons in response to combined proteotoxic and oxidative stressors, the two major characteristics of these diseases. Therefore, a relatively high-throughput dual-hit model of stress synergy was developed in primary hippocampal neurons. In order to increase the rigor of the study and strengthen the interpretations, three independent, unbiased viability assays were employed at multiple timepoints. Stress synergy was elicited when hippocampal neurons were treated with the proteasome inhibitor MG132 followed by exposure to the oxidative toxicant paraquat, but only after 48 h. MG132 and paraquat only elicited additive effects 24 h after the final hit and even loss of heat shock protein 70 activity and glutathione did not promote stress synergy at this early timepoint. Dual hits of MG132 elicited modest glutathione loss and slightly synergistic toxic effects 48 h after the second hit, but only at some concentrations and only according to two viability assays (metabolic fitness and cytoskeletal integrity). The thiol N-acetyl cysteine protected hippocampal neurons against dual MG132/MG132 hits but not dual MG132/paraquat hits. These findings support the view that proteotoxic and oxidative stress propel and propagate each other in hippocampal neurons, leading to synergistically toxic effects, but not as the default response and only after a delay. The neuronal stress synergy observed here lies in contrast to astrocytic responses to dual hits, because astrocytes that survive severe proteotoxic stress resist additional cell loss following second hits. In conclusion, a new model of hippocampal vulnerability was developed for the testing of therapies, because neuroprotective treatments that are effective against severe, synergistic stress are more likely to succeed in the clinic. © 2016 Wiley Periodicals, Inc.


Assuntos
Hipocampo/fisiopatologia , Neurônios/fisiologia , Estresse Fisiológico/fisiologia , Acetilcisteína/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Leupeptinas/toxicidade , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Neurológicos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Paraquat/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Sprague-Dawley , Estresse Fisiológico/efeitos dos fármacos
3.
Front Mol Neurosci ; 12: 87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024254

RESUMO

In order to fulfill their evolutionary role as support cells, astrocytes have to tolerate intense oxidative stress under conditions of brain injury and disease. It is well known that astrocytes exposed to mild oxidative stress are preconditioned against subsequent stress exposure in dual hit models. However, it is unclear whether severe oxidative stress leads to stress tolerance, stress exacerbation, or no change in stress resistance in astrocytes. Furthermore, it is not known whether reactive astrocytes surviving intense oxidative stress can still support nearby neurons. The data in this Brief Report suggest that primary cortical astrocytes surviving high concentrations of the oxidative toxicant paraquat are completely resistant against subsequent oxidative challenges of the same intensity. Inhibitors of multiple endogenous defenses (e.g., glutathione, heme oxygenase 1, ERK1/2, Akt) failed to abolish or even reduce their stress resistance. Stress-reactive cortical astrocytes surviving intense oxidative stress still managed to protect primary cortical neurons against subsequent oxidative injuries in neuron/astrocyte co-cultures, even at concentrations of paraquat that otherwise led to more than 80% neuron loss. Although our previous work demonstrated a lack of stress tolerance in primary neurons exposed to dual paraquat hits, here we show that intensely stressed primary neurons can resist a second hit of hydrogen peroxide. These collective findings suggest that stress-reactive astroglia are not necessarily neurotoxic, and that severe oxidative stress does not invariably lead to stress exacerbation in either glia or neurons. Therefore, interference with the natural functions of stress-reactive astrocytes might have the unintended consequence of accelerating neurodegeneration.

4.
Brain Struct Funct ; 223(3): 1255-1273, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29103154

RESUMO

Dopamine loss and motor deficits in Parkinson's disease typically commence unilaterally and remain asymmetric for many years, raising the possibility that endogenous defenses slow the cross-hemispheric transmission of pathology. It is well-established that the biological response to subtoxic stress prepares cells to survive subsequent toxic challenges, a phenomenon known as preconditioning, tolerance, or stress adaptation. Here we demonstrate that unilateral striatal infusions of the oxidative toxicant 6-hydroxydopamine (6-OHDA) precondition the contralateral nigrostriatal pathway against the toxicity of a second 6-OHDA infusion in the opposite hemisphere. 6-OHDA-induced loss of dopaminergic terminals in the contralateral striatum was ablated by cross-hemispheric preconditioning, as shown by two independent markers of the dopaminergic phenotype, each measured by two blinded observers. Similarly, loss of dopaminergic somata in the contralateral substantia nigra was also abolished, according to two blinded measurements. Motor asymmetries in floor landings, forelimb contacts with a wall, and spontaneous turning behavior were consistent with these histological observations. Unilateral 6-OHDA infusions increased phosphorylation of the kinase ERK2 and expression of the antioxidant enzyme CuZn superoxide dismutase in both striata, consistent with our previous mechanistic work showing that these two proteins mediate preconditioning in dopaminergic cells. These findings support the existence of cross-hemispheric preconditioning in Parkinson's disease and suggest that dopaminergic neurons mount impressive natural defenses, despite their reputation as being vulnerable to oxidative injury. If these results generalize to humans, Parkinson's pathology may progress slowly and asymmetrically because exposure to a disease-precipitating insult induces bilateral upregulation of endogenous defenses and elicits cross-hemispheric preconditioning.


Assuntos
Corpo Estriado/patologia , Lateralidade Funcional/fisiologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Substância Negra/patologia , Adrenérgicos/toxicidade , Animais , Antraquinonas/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Lateralidade Funcional/efeitos dos fármacos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Substância Negra/metabolismo , Superóxido Dismutase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Mol Neurodegener ; 11(1): 49, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27363576

RESUMO

BACKGROUND: α-synucleinopathy emerges quite early in olfactory structures such as the olfactory bulb and anterior olfactory nucleus (OB/AON) in Parkinson's disease. This may contribute to smell impairments years before the commencement of motor symptoms. We tested whether α-synucleinopathy can spread from the OB/AON to regions of the limbic telencephalon that harbor connections with olfactory structures. FINDINGS: α-synuclein fibrils were infused into the OB/AON. Inclusions containing pathologically phosphorylated α-synuclein (pSer129) were observed three months later in the piriform and entorhinal cortices, amygdala, and hippocampal formation. The retrograde tract-tracer FluoroGold confirmed the existence of first-order afferents at these sites. Some sites harbored FluoroGold(+) neurons but no inclusions, suggestive of selective vulnerabilities. Multiple areas close to the injection site but not connected with the OB/AON remained free of inclusions, suggesting a lack of widespread uptake of fibrils from interstitial diffusion. Two independent pSer129 antibodies revealed the same labeling patterns and preadsorption control experiments confirmed a loss of pSer129 staining. Dense total α-synuclein (but not pSer129) staining was apparent in the OB/AON 1.5 h following fibril infusions, suggesting that pSer129(+) staining did not reflect exogenously infused material. Waterbath sonication of fibrils for 1 h improved α-synucleinopathy transmission relative to 1 min-long probe sonication. Electron microscopy revealed that longer sonication durations reduced fibril size. The Thioflavin stain labeled cells at the infusion site and some, but not all inclusions contained ubiquitin. Three-dimensional confocal analyses revealed that many inclusions ensconced NeuN(+) neuronal nuclei. Young and aged mice exhibited similar topographical spread of α-synucleinopathy. CONCLUSIONS: 1) α-synucleinopathy in this model is transmitted through some, but not all neuroanatomical connections, 2) pathology is largely confined to first-order afferent sites at three months and this is most parsimoniously explained by retrograde transport, and 3) transmission in aged animals is largely similar to that in young control animals at three months post-infusion.


Assuntos
Transporte Axonal/fisiologia , Bulbo Olfatório/metabolismo , Córtex Olfatório/metabolismo , Transtornos Parkinsonianos/patologia , Lobo Temporal/metabolismo , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Bulbo Olfatório/patologia , Córtex Olfatório/patologia , Transtornos Parkinsonianos/metabolismo , Lobo Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA