Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Orthod Dentofacial Orthop ; 165(3): 321-331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010236

RESUMO

INTRODUCTION: Skeletal stability after bimaxillary surgical correction of Class III malocclusion was investigated through a qualitative and quantitative analysis of the maxilla and the distal and proximal mandibular segments using a 3-dimensional voxel-based superimposition among virtual surgical predictions performed by the orthodontist in close communication with the maxillofacial surgeon and 12-18 months postoperative outcomes. METHODS: A comprehensive secondary data analysis was conducted on deidentified preoperative (1 month before surgery [T1]) and 12-18 months postoperative (midterm [T2]) cone-beam computed tomography scans, along with virtual surgical planning (VSP) data obtained by Dolphin Imaging software. The sample for the study consisted of 17 patients (mean age, 24.8 ± 3.5 years). Using 3D Slicer software, automated tools based on deep-learning approaches were used for cone-beam computed tomography orientation, registration, bone segmentation, and landmark identification. Colormaps were generated for qualitative analysis, whereas linear and angular differences between the planned (T1-VSP) and observed (T1-T2) outcomes were calculated for quantitative assessments. Statistical analysis was conducted with a significance level of α = 0.05. RESULTS: The midterm surgical outcomes revealed a slight but significantly less maxillary advancement compared with the planned position (mean difference, 1.84 ± 1.50 mm; P = 0.004). The repositioning of the mandibular distal segment was stable, with insignificant differences in linear (T1-VSP, 1.01 ± 3.66 mm; T1-T2, 0.32 ± 4.17 mm) and angular (T1-VSP, 1.53° ± 1.60°; T1-T2, 1.54° ± 1.50°) displacements (P >0.05). The proximal segments exhibited lateral displacement within 1.5° for both the mandibular right and left ramus at T1-VSP and T1-T2 (P >0.05). CONCLUSIONS: The analysis of fully digital planned and surgically repositioned maxilla and mandible revealed excellent precision. In the midterm surgical outcomes of maxillary advancement, a minor deviation from the planned anterior movement was observed.


Assuntos
Má Oclusão Classe III de Angle , Procedimentos Cirúrgicos Ortognáticos , Humanos , Adulto Jovem , Adulto , Procedimentos Cirúrgicos Ortognáticos/métodos , Má Oclusão Classe III de Angle/diagnóstico por imagem , Má Oclusão Classe III de Angle/cirurgia , Ortodontistas , Imageamento Tridimensional , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Tomografia Computadorizada de Feixe Cônico , Maxila/diagnóstico por imagem , Maxila/cirurgia , Cefalometria
2.
Orthod Craniofac Res ; 26(4): 560-567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36811276

RESUMO

OBJECTIVE: To present and validate an open-source fully automated landmark placement (ALICBCT) tool for cone-beam computed tomography scans. MATERIALS AND METHODS: One hundred and forty-three large and medium field of view cone-beam computed tomography (CBCT) were used to train and test a novel approach, called ALICBCT that reformulates landmark detection as a classification problem through a virtual agent placed inside volumetric images. The landmark agents were trained to navigate in a multi-scale volumetric space to reach the estimated landmark position. The agent movements decision relies on a combination of DenseNet feature network and fully connected layers. For each CBCT, 32 ground truth landmark positions were identified by 2 clinician experts. After validation of the 32 landmarks, new models were trained to identify a total of 119 landmarks that are commonly used in clinical studies for the quantification of changes in bone morphology and tooth position. RESULTS: Our method achieved a high accuracy with an average of 1.54 ± 0.87 mm error for the 32 landmark positions with rare failures, taking an average of 4.2 second computation time to identify each landmark in one large 3D-CBCT scan using a conventional GPU. CONCLUSION: The ALICBCT algorithm is a robust automatic identification tool that has been deployed for clinical and research use as an extension in the 3D Slicer platform allowing continuous updates for increased precision.


Assuntos
Pontos de Referência Anatômicos , Imageamento Tridimensional , Cefalometria/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Pontos de Referência Anatômicos/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38736903

RESUMO

ShapeAXI represents a cutting-edge framework for shape analysis that leverages a multi-view approach, capturing 3D objects from diverse viewpoints and subsequently analyzing them via 2D Convolutional Neural Networks (CNNs). We implement an automatic N-fold cross-validation process and aggregate the results across all folds. This ensures insightful explainability heat-maps for each class across every shape, enhancing interpretability and contributing to a more nuanced understanding of the underlying phenomena. We demonstrate the versatility of ShapeAXI through two targeted classification experiments. The first experiment categorizes condyles into healthy and degenerative states. The second, more intricate experiment, engages with shapes extracted from CBCT scans of cleft patients, efficiently classifying them into four severity classes. This innovative application not only aligns with existing medical research but also opens new avenues for specialized cleft patient analysis, holding considerable promise for both scientific exploration and clinical practice. The rich insights derived from ShapeAXI's explainability images reinforce existing knowledge and provide a platform for fresh discovery in the fields of condyle assessment and cleft patient severity classification. As a versatile and interpretative tool, ShapeAXI sets a new benchmark in 3D object interpretation and classification, and its groundbreaking approach hopes to make significant contributions to research and practical applications across various domains. ShapeAXI is available in our GitHub repository https://github.com/DCBIA-OrthoLab/ShapeAXI.

4.
Sci Rep ; 13(1): 15861, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740091

RESUMO

Cleft lip and/or palate (CLP) is the most common congenital craniofacial anomaly and requires bone grafting of the alveolar cleft. This study aimed to develop a novel classification algorithm to assess the severity of alveolar bone defects in patients with CLP using three-dimensional (3D) surface models and to demonstrate through an interpretable artificial intelligence (AI)-based algorithm the decisions provided by the classifier. Cone-beam computed tomography scans of 194 patients with CLP were used to train and test the performance of an automatic classification of the severity of alveolar bone defect. The shape, height, and width of the alveolar bone defect were assessed in automatically segmented maxillary 3D surface models to determine the ground truth classification index of its severity. The novel classifier algorithm renders the 3D surface models from different viewpoints and captures 2D image snapshots fed into a 2D Convolutional Neural Network. An interpretable AI algorithm was developed that uses features from each view and aggregated via Attention Layers to explain the classification. The precision, recall and F-1 score were 0.823, 0.816, and 0.817, respectively, with agreement ranging from 97.4 to 100% on the severity index within 1 group difference. The new classifier and interpretable AI algorithm presented satisfactory accuracy to classify the severity of alveolar bone defect morphology using 3D surface models of patients with CLP and graphically displaying the features that were considered during the deep learning model's classification decision.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/diagnóstico por imagem , Inteligência Artificial , Fissura Palatina/diagnóstico por imagem , Algoritmos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38770027

RESUMO

Automated clinical decision support systems rely on accurate analysis of three-dimensional (3D) medical and dental images to assist clinicians in diagnosis, treatment planning, intervention, and assessment of growth and treatment effects. However, analyzing longitudinal 3D images requires standardized orientation and registration, which can be laborious and error-prone tasks dependent on structures of reference for registration. This paper proposes two novel tools to automatically perform the orientation and registration of 3D Cone-Beam Computed Tomography (CBCT) scans with high accuracy (<3° and <2mm of angular and linear errors when compared to expert clinicians). These tools have undergone rigorous testing, and are currently being evaluated by clinicians who utilize the 3D Slicer open-source platform. Our work aims to reduce the sources of error in the 3D medical image analysis workflow by automating these operations. These methods combine conventional image processing approaches and Artificial Intelligence (AI) based models trained and tested on de-identified CBCT volumetric images. Our results showed robust performance for standardized and reproducible image orientation and registration that provide a more complete understanding of individual patient facial growth and response to orthopedic treatment in less than 5 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA