Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Crit Rev Biotechnol ; 44(3): 373-387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775664

RESUMO

Porphyrins, phycobilins, and their proteins have abundant π-electrons and strongly absorb visible light, some of which bind a metal ion in the center. Because of the structural and optical properties, they not only play critical roles as an essential component in natural systems but also have attracted much attention as a high value specialty chemical in various fields, including renewable energy, cosmetics, medicines, and foods. However, their commercial application seems to be still limited because the market price of porphyrins and phycobilins is generally expensive to apply them easily. Furthermore, their petroleum-based chemical synthesis is energy-intensive and emits a pollutant. Recently, to replace petroleum-based production, many studies on the bioproduction of metalloporphyrins, including Zn-porphyrin, Co-porphyrin, and heme, porphyrin derivatives including chlorophyll, biliverdin, and phycobilins, and their proteins including hemoproteins, phycobiliproteins, and phytochromes from renewable carbon sources using microbial cell factories have been reported. This review outlines recent advances in the bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories developed by various microbial biotechnology techniques, provides well-organized information on metabolic regulations of the porphyrin metabolism, and then critically discusses challenges and future perspectives. Through these, it is expected to be able to achieve possible solutions and insights and to develop an outstanding platform to be applied to the industry in future research.


Assuntos
Metaloporfirinas , Petróleo , Porfirinas , Ficobilinas , Engenharia Metabólica
3.
J Agric Food Chem ; 72(10): 5318-5324, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477042

RESUMO

Cyanase is a possible solution to reduce the environmental impact of cyanide. However, the enzyme's dependence on HCO3- limits its industrial applications. To overcome this problem, carbonic anhydrase is utilized in this study. Three types of Catcher/Tag systems were introduced into the cyanase (psCYN) from Pseudomonas stutzeri and the carbonic anhydrase (hmCA) from Hydrogenovibrio marinus to construct enzyme complexes via irreversible covalent bonds. Initially, a cyanase complex with the aid of scaffolding proteins was designed. The results of cyanase complexes using scaffolding proteins were similar to or inferior to those of the two free enzymes. To address this, the two enzymes were manipulated to form a direct bioconjugation without the need for scaffolding proteins. The two enzymes forming a direct conjugation showed activity more than 2.5 times higher than that of cyanase alone. In conclusion, this outcome will contribute to solving problems related to residual cyanides in food and the environment.


Assuntos
Anidrases Carbônicas , Cianetos/metabolismo , Cianatos/metabolismo , Carbono-Nitrogênio Liases/metabolismo , Complexos Multienzimáticos
4.
J Microbiol Biotechnol ; 34(5): 994-1002, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38379287

RESUMO

The rise in plant-based food consumption is propelled by concerns for sustainability, personal beliefs, and a focus on healthy dietary habits. This trend, particularly in alternative meat, has attracted attention from specialized brands and eco-friendly food companies, leading to increased interest in plant-based alternatives. The dominant plant-based proteins, derived mainly from legumes, include soy protein isolates, which significantly impact sensory factors. In the realm of plant-based fats, substitutes are categorized into fat substitutes based on fats and fat mimetics based on proteins and carbohydrates. The production of these fats, utilizing gums, emulsions, gels, and additives, explores characteristics influencing the appearance, texture, flavor, and storage stability of final plant-based products. Analysis of plant-based proteins and fats in hamburger patties provides insights into manufacturing methods and raw materials used by leading alternative meat companies. However, challenges persist, such as replicating meat's marbling characteristic and addressing safety considerations in terms of potential allergy induction and nutritional supplementation. To enhance functionality and develop customized plant-based foods, it is essential to explore optimal combinations of various raw materials and develop new plant-based proteins and fat separation.


Assuntos
Proteínas de Plantas , Humanos , Substitutos da Gordura , Gorduras/química , Manipulação de Alimentos/métodos , Proteínas de Soja , Produtos da Carne , Fabaceae , Carne , Animais
5.
Enzyme Microb Technol ; 165: 110207, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709516

RESUMO

Porphyran, a polysaccharide composed of red algae, is a source of a multifunctional oligosaccharide material and raw biomass with various physiological activities. The glycolysis of porphyrans into oligosaccharides through various porphyranases is an approach for obtaining high-quality and promising alternative resources. In this study, porphyran was extracted from Porphyra yezoensis and used as a research substrate. We also established an efficient hydrolysis method using an enzymatic complex obtained through cohesin-dockerin interactions that degrade natural polysaccharides. The cohesion-dockerin interaction is designed to genetically bind the dockerin module to the end of an existing enzyme and then attach the cohesin module to obtain a protein complex. The designed protein complex has been shown to further increase the activity on the substrate, which can be considered a useful method to obtain efficient oligosaccharides or monosaccharides through hydrolysis of red algae for bioresources.


Assuntos
Complexos Multienzimáticos , Enzimas Multifuncionais , Hidrólise , Complexos Multienzimáticos/metabolismo , Sefarose/química , Proteínas de Bactérias/metabolismo
6.
J Bacteriol ; 194(9): 2181-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22366416

RESUMO

The pck (cg3169) gene of Corynebacterium glutamicum encodes a phosphoenolpyruvate carboxykinase (PEPCK). Here, a candidate transcriptional regulator that binds to the promoter region of pck was detected using a DNA affinity purification approach. An isolated protein was identified to be PckR (Cg0196), a GntR family transcriptional regulator which consists of 253 amino acids with a mass of 27 kDa as measured by peptide mass fingerprinting. The results of electrophoretic mobility shift assays verified that PckR specifically binds to the pck promoter. The putative regulator binding region extended from position -44 to -27 (an 18-bp sequence) relative to the transcriptional start point of the pck gene. We measured the expression of pck in a pckR deletion mutant by using quantitative real-time reverse transcription-PCR. The expression level of pck in the pckR mutant was 7.6 times higher than that in wild-type cells grown in glucose. Comparative DNA microarray hybridizations and bioinformatic searches revealed the gene composition of the transcriptional regulon of C. glutamicum. Based on these results, PckR seemed to play an important role in the regulation of PEPCK in C. glutamicum grown in glucose. In particular, these assays revealed that PckR acts as a repressor of pck expression during glucose metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/classificação , Corynebacterium glutamicum/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli , Deleção de Genes , Perfilação da Expressão Gênica , Genoma Bacteriano , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
7.
Sci Total Environ ; 842: 156890, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753492

RESUMO

Poly(ethylene terephthalate) (PET) is synthesized via a rich ester bond between terephthalate (TPA) and ethylene glycol (EG). Because of this, PET degradation takes a long time and PET accumulates in the environment. Many studies have been conducted to improve PET degrading enzyme to increase the efficiency of PET depolymerization. However, enzymatic PET decomposition is still restricted, making upcycling and recycling difficult. Here, we report a novel PET degrading complex composed of Ideonella sakaiensis PETase and Candida antarctica lipase B (CALB) that improves degradability, binding ability and enzyme stability. The reaction mechanism of chimeric PETase (cPETase) and chimeric CALB (cCALB) was confirmed by PET and bis (2-hydroxyethyl terephthalate) (BHET). cPETase generated BHET and mono (2-hydroxyethyl terephthalate (MHET) and cCALB produced terephthalate (TPA). Carbohydrate binding module 3 (CBM3) in the scaffolding protein greatly improved PET film binding affinity. Finally, the final enzyme complex demonstrated a 6.5-fold and 8.0-fold increase in the efficiency of hydrolysis from PET with either high crystalline or waste to TPA than single enzymes, respectively. This complex could effectively break down waste PET while maintaining enzyme stability and would be applied for biological upcycling of TPA.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Etilenos , Ácidos Ftálicos/metabolismo , Plásticos/metabolismo , Polietilenotereftalatos/química
8.
Int J Biol Macromol ; 189: 819-825, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34453982

RESUMO

Marine macroalgae are potential renewable feedstocks for valuable biomaterials. Among them, alginate is a primary component in brown algae that can be nonenzymatically converted and enzymatically degraded by alginate lyases to 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH). Here, we constructed alginolytic enzyme complexes comprising two different alginate lyases for synergistic alginate degradation. The complexes showed good thermostability with 60% of the residual activity at high temperature (60 °C). Furthermore, they produced 0.85 and 0.18 mg/mL DEH from alginate and natural brown algae as substrates, respectively. The enzyme complex successfully decomposed brown algal biomass, resulting in a 3.15-fold improvement in DEH when compared to free enzymes. The Ralstonia eutropha strain with alginolytic enzyme complexes on the cell surface showed higher Polyhydroxybutyrate (PHB) production and produced 2.58 g/L PHB from alginate. After the use of alginate, remaining biomass such as fucoidan and laminaran can also be used in the future for high value ingredients in nutritional, medical device, skincare and dermatological products. These results demonstrate that it is possible to create more efficient strategies for producing biodegradable PHB and functional polysaccharides from brown algal substrates.


Assuntos
Butiratos/metabolismo , Cupriavidus necator/metabolismo , Phaeophyceae/química , Alginatos , Estabilidade Enzimática , Cinética , Polissacarídeo-Liases/metabolismo , Especificidade por Substrato , Temperatura
9.
Bioresour Technol ; 319: 124242, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254465

RESUMO

Cellulosomes are scaffold proteins displaying enzymes on the cell wall to efficiently obtain nutrient sources. CcGlcNAcase is a novel cellulosomal component. Based on sequence analysis, CcGlcNAcase was predicted to be a chitinolytic enzyme based on high homology with the discoidin domain-containing protein and chitobiase/ ß-hexosaminidase C terminal domain. CcGlcNAcase expression was notably increased when chitin was present. CcGlcNAcase produced N-acetyl-d-glucosamine from various lengths of N-acetyl-d-glucosamine. CcGlcNAcase bound to chitin (89%) and fungi (54.10%), whereas CcGlcNAcase exhibited a low binding ability to cellulose and xylan. CcGlcNAcase hydrolyzed fungi, yielding maximum 3.90 g/L N-acetyl-d-glucosamine. CcGlcNAcase enhanced cellulase toward fungi-infected lignocellulosic biomass, yielding 18 mg/L glucose (1.32-fold) and 1.72-fold increased total reducing sugar levels, whereas cellulase alone produced 13 mg/L glucose. Taken together, CcGlcNAcase can be utilized to enhance the degradation of fungi-infected lignocellulosic biomass and exhibits potential applications in the wood and sugar industry.


Assuntos
Acetilglucosaminidase , Açúcares , Biomassa , Fungos , Lignina
10.
Biochem Biophys Res Commun ; 401(2): 300-5, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20851105

RESUMO

We have identified and characterized a novel transcriptional regulator that binds to the promoter region of succinyl-CoA synthetase (sucCD) in Corynebacterium glutamicum. Using biotin-labeled DNA affinity beads, we identified a DeoR-type transcriptional regulator, SucR (Cg0146), which is a protein consisting of 282 amino acids with a mass of 31 kDa and RamB (Cg0444). The results of electrophoretic mobility shift assays verified that these regulators specifically bind to the sucCD promoter region. The putative SucR binding region extends from position -155 to -146 (a 10 bp sequence, ACTCTAGGGG) relative to the transcriptional start point of the sucCD operon. The expression level of sucCD in a sucR deletion mutant was seven times higher than that in wild-type cells grown on acetate. The increase in succinyl-CoA synthetase levels caused by inactivation of sucR. These assays revealed that SucR acts as a repressor of sucCD expression during acetate metabolism.


Assuntos
Corynebacterium glutamicum/enzimologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Proteínas Repressoras/metabolismo , Succinato-CoA Ligases/genética , Acetatos/metabolismo , Sítios de Ligação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Deleção de Genes , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transcrição Gênica
11.
J Agric Food Chem ; 68(10): 3195-3202, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32075368

RESUMO

d-Tagatose is a rare monosaccharide that is used in products in the food industry as a low-calorie sweetener. To facilitate biological conversion of d-tagatose, the agarolytic enzyme complexes based on the principle of the cellulosome structure were constructed through dockerin-cohesin interaction with the scaffoldin. The construction of agarolytic complexes composed of l-arabinose isomerase caused efficient isomerization activity on the agar-derived sugars. In a trienzymatic complex, the chimeric ß-agarase (cAgaB) and anhydro-galactosidase (cAhgA) from Zobellia galactanivorans could synergistically hydrolyze natural agar substrates and l-arabinose isomerase (LsAraA Doc) from Lactobacillus sakei 23K could convert d-galactose into d-tagatose. The trienzymatic complex increased the concentration of d-tagatose from the agar substrate to 4.2 g/L. Compared with the monomeric enzyme, the multimeric enzyme showed a 1.4-fold increase in tagatose production, good thermostability, and reusability. A residual activity of 75% remained, and 52% of conversion was noted after five recycles. These results indicated that the dockerin-fused chimeric enzymes on the scaffoldin successfully isomerized d-galactose into d-tagatose with synergistic activity. Thus, the results demonstrated the possibility of advancing efficient strategies for utilizing red algae as a biomass source to produce d-tagatose in the industrial food field that uses marine biomass as the feedstock.


Assuntos
Aldose-Cetose Isomerases/química , Proteínas de Bactérias/química , Galactose/química , Galactosidases/química , Glicosídeo Hidrolases/química , Hexoses/química , Edulcorantes/química , Biocatálise , Flavobacteriaceae/enzimologia , Isomerismo , Latilactobacillus sakei/enzimologia
12.
Bioresour Technol ; 289: 121728, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31277889

RESUMO

Lignin is a robust material that is considered useless because it has an inhibitory effect on microbes and acts as a physical barrier for cellulose degradation. Therefore, it has been removed from cellulosic biomass to produce high-value materials. However, lignin monomers can be converted to value-added chemicals such as biodegradable plastics and food additives by appropriately engineered microbes. Lignin degradation through peroxidase, laccase and other proteins with auxiliary activity is the first step in lignin valorization. Metabolic engineering of microorganisms for increased tolerance and production yield is the second step for lignin valorization. Here, this review offers a summary of current biotechnologies using various enzymatic activities, synergistic enzyme mixtures and metabolic engineering for lignin valorization in biorefinery.


Assuntos
Lacase , Lignina , Biomassa , Biotecnologia , Peroxidases
13.
J Biol Eng ; 13: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30976317

RESUMO

BACKGROUND: Biliverdin, a prospective recyclable antioxidant and one of the most important precursors for optogenetics, has received growing attention. Biliverdin is currently produced by oxidation of bilirubin from mammalian bile using chemicals. However, unsustainable procedures of extraction, chemical oxidation, and isomer separation have prompted bio-based production using a microbial cell factory. RESULTS: In vitro thermodynamic analysis was performed to show potential candidates of bottleneck enzymes in the pathway to produce biliverdin. Among the candidates, hemA and hemL were overexpressed in Corynebacterium glutamicum to produce heme, precursor of biliverdin. To increase precursor supply, we suggested a novel hemQ-mediated coproporphyrin dependent pathway rather than noted hemN-mediated protoporphyrin dependent pathway in C. glutamicum. After securing precursors, hmuO was overexpressed to pull the carbon flow to produce biliverdin. Through modular optimization using gene rearrangements of hemA, hemL, hemQ, and hmuO, engineered C. glutamicum BV004 produced 11.38 ± 0.47 mg/L of biliverdin at flask scale. Fed-batch fermentations performed in 5 L bioreactor with minimal medium using glucose as a sole carbon source resulted in the accumulation of 68.74 ± 4.97 mg/L of biliverdin, the highest titer to date to the best of our knowledge. CONCLUSIONS: We developed an eco-friendly microbial cell factory to produce biliverdin using C. glutamicum as a biosystem. Moreover, we suggested that C. glutamicum has the thermodynamically favorable coproporphyrin dependent pathway. This study indicated that C. glutamicum can work as a powerful platform to produce biliverdin as well as heme-related products based on the rational design with in vitro thermodynamic analysis.

14.
Int J Biol Macromol ; 129: 181-186, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738166

RESUMO

Melanin is major cause of dark skin, which is regarded as social status in eastern Asia. As a result, researchers in cosmetic industries are developing skin whitening agents. Melanin can be decolorized by many oxidative enzymes. Laccase (CueO) from Escherichia coli and dye-decolorizing peroxidase (DyP) from Bacillus subtilis were merged with the dockerin domain of endoglucanase B from Clostridium cellulovorans. Scaffoldin has great potential to exert structural benefits that enable complementary enzyme effects. The carbohydrate binding module (CBM) in scaffoldin was replaced with the melanin binding peptide (MBP) to increase melanin binding and thereby enhance melanin degradation. The modified scaffoldin exhibits a nearly 64% increase in specific binding to melanin over that of the native scaffoldin. Laccase was used to degrade melanin via the production of hydrogen peroxide, which produced synergistic activity with peroxidase. The activity of the optimized complex was approximately 6.4-fold greater than that of laccase alone. This enzyme complex can also reduce the number of melanin granules in corneocytes. Based on these results, a recombinant enzyme complex is suitable for use in melanin degradation by next generation whitening agents in the skin cosmetics industry.


Assuntos
Lacase/farmacologia , Melaninas/metabolismo , Peroxidase/farmacologia , Preparações Clareadoras de Pele/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Estabilidade Enzimática , Peróxido de Hidrogênio/química , Cinética , Lacase/química , Lacase/genética , Oxirredução , Peroxidase/química , Peroxidase/genética , Ligação Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Preparações Clareadoras de Pele/química
15.
Bioresour Technol ; 250: 666-672, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29220811

RESUMO

In the practice of converting red algae biomass into biofuel or valuable biomaterials, the critical step is the decomposition process of the agarose to give fermentable monomeric sugars. In this study, we selected three enzymes such as agarase, carrageenase and neoagarobiose hydrolase to inducible the simultaneous hydrolysis of the major substrates such as agar and carrageenan constituting the pretreated red algae, and expressed the chimeric enzymes and formed a complexes through optimization of addition ratio. As a result, hydrolysis by enzyme complexes showed a maximum sugar release of 679 mg L-1 with 67.9% saccharification yield from G. verrucosa natural substrate. The difference in the reducing sugar by the enzyme complexes was 3.6-fold higher than that of the monomer enzyme (cAgaB yield 188.6 mg L-1). The synergistic effect of producing sugars from red algae biomass through these enzyme complexes can be a very important biological tools aimed at bioenergy production.


Assuntos
Glicosídeo Hidrolases , Rodófitas , Dissacaridases
16.
Mar Biotechnol (NY) ; 20(1): 1-9, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29151139

RESUMO

Expansin act by loosening hydrogen bonds in densely packed polysaccharides. This work characterizes the biological functions of expansin in the gelling and degradation of algal polysaccharides. In this study, the bacterial expansin BpEX from Bacillus pumilus was fused with the dockerin module of a cellulosome system for assembly with agarolytic complexes. The assembly of chimeric expansin caused an indicative enhancement in agarase activity. The enzymatic activities on agar substrate and natural biomass were 3.7-fold and 3.3-fold higher respectively than that of agarase as a single enzyme. To validate the effect on the agar degradation, the regulation potential of parameters related to gel rheology by bacterial expansin was experimentally investigated to indicate that the bacterial expansin lowered the gelling temperature and viscosity of agar. Thus, these results demonstrated the possibility of advancing more efficient strategies for utilizing agar as oligo sugar source in the biorefinery field that uses marine biomass as feedstocks.


Assuntos
Ágar/química , Proteínas de Bactérias/metabolismo , Rodófitas/metabolismo , Bacillus pumilus/química , Biomassa , Celulossomas/metabolismo , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Reologia
17.
Biosens Bioelectron ; 114: 1-9, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29775852

RESUMO

Regardless of the malaria disease risk, the malaria parasite Plasmodium falciparum has an interesting mechanism. During its growth within the red blood cell, toxic free heme is converted into an insoluble crystalline form called the malaria pigment, or hemozoin. In particular, natural hemozoin nanocrystals can provide multiple applications in biosensing fields for health care and diagnosis as similar to artificial metal nanoparticles. In this study, the heme was biologically synthesized and polymerized by Corynebacterium glutamicum and final polymer was applied as a biomimetic conductive biopolymer. The biosynthesized monomer heme by metabolic engineered strain was enzymatically polymerized by an enzyme complex containing two different heme polymerization proteins. Moreover, the electrical conductivities of hemozoin prepared by heme polymerase enzyme complexes were investigated and compared with those of the heme monomer. Because of the synergetic effects of polymerized heme, synthesized artificial nanocrystals exhibited a greater conductive property than a heme monomer. As a result of their surpassing properties, developed novel magnetoelectric nanocrystals could be motivated as smaller scale electronic devices with advanced properties. Thus, these results will open a brand new field in the frontier of the heme detoxification mechanism of the malaria parasite and its biomimetic application as advanced nanomaterials for biological and biomedical sensing.


Assuntos
Materiais Biomiméticos/química , Biopolímeros/biossíntese , Técnicas Biossensoriais/métodos , Heme/química , Nanopartículas de Magnetita/química , Catálise , Corynebacterium glutamicum , Condutividade Elétrica , Escherichia coli/genética , Hemeproteínas/química , Humanos , Tamanho da Partícula , Polimerização , Propriedades de Superfície , Transferases/química
18.
Sci Rep ; 8(1): 14460, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262872

RESUMO

Zn-porphyrin is a promising organic photosensitizer in various fields including solar cells, interface and biomedical research, but the biosynthesis study has been limited, probably due to the difficulty of understanding complex biosynthesis pathways. In this study, we developed a Corynebacterium glutamicum platform strain for the biosynthesis of Zn-coproporphyrin III (Zn-CP III), in which the heme biosynthesis pathway was efficiently upregulated. The pathway was activated and reinforced by strong promoter-induced expression of hemAM (encoding mutated glutamyl-tRNA reductase) and hemL (encoding glutamate-1-semialdehyde aminotransferase) genes. This engineered strain produced 33.54 ± 3.44 mg/l of Zn-CP III, while the control strain produced none. For efficient global regulation of the complex pathway, the dtxR gene encoding the transcriptional regulator diphtheria toxin repressor (DtxR) was first overexpressed in C. glutamicum with hemAM and hemL genes, and its combinatorial expression was improved by using effective genetic tools. This engineered strain biosynthesized 68.31 ± 2.15 mg/l of Zn-CP III. Finally, fed-batch fermentation allowed for the production of 132.09 mg/l of Zn-CP III. This titer represents the highest in bacterial production of Zn-CP III reported to date, to our knowledge. This study demonstrates that engineered C. glutamicum can be a robust biotechnological model for the production of photosensitizer Zn-porphyrin.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme , Metaloporfirinas/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Regulação para Cima , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Proteínas de Ligação a DNA/genética , Heme/biossíntese , Heme/genética , Engenharia Metabólica , Metaloporfirinas/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo
19.
J Agric Food Chem ; 66(51): 13454-13463, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516051

RESUMO

Taurine is a biologically and physiologically valuable food additive. However, commercial taurine production mainly relies on environmentally harmful chemical synthesis. Herein, for the first time in bacteria, we attempted to produce taurine in metabolically engineered Corynebacterium glutamicum. The taurine-producing strain was developed by introducing cs, cdo1, and csad genes. Interestingly, while the control strain could not produce taurine, the engineered strains successfully produced taurine via the newly introduced metabolic pathway. Furthermore, we investigated the effect of a deletion strain of the transcriptional repressor McbR gene on taurine production. As a result, sulfur accumulation and l-cysteine biosynthesis were reinforced by the McbR deletion strain, which further increased the taurine production by 2.3-fold. Taurine production of the final engineered strain Tau11 was higher than in other previously reported strains. This study demonstrated a potential approach for eco-friendly biosynthesis as an alternative to the chemical synthesis of a food additive.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Aditivos Alimentares/metabolismo , Engenharia Metabólica , Taurina/biossíntese , Fermentação , Redes e Vias Metabólicas
20.
J Agric Food Chem ; 65(23): 4698-4707, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28560868

RESUMO

l-Cysteine is a valuable sulfur-containing amino acid widely used as a nutrition supplement in industrial food production, agriculture, and animal feed. However, this amino acid is mostly produced by acid hydrolysis and extraction from human or animal hairs. In this study, we constructed recombinant Corynebacterium glutamicum strains that overexpress combinatorial genes for l-cysteine production. The aims of this work were to investigate the effect of the combined overexpression of serine acetyltransferase (CysE), O-acetylserine sulfhydrylase (CysK), and the transcriptional regulator CysR on l-cysteine production. The CysR-overexpressing strain accumulated approximately 2.7-fold more intracellular sulfide than the control strain (empty pMT-tac vector). Moreover, in the resulting CysEKR recombinant strain, combinatorial overexpression of genes involved in l-cysteine production successfully enhanced its production by approximately 3.0-fold relative to that in the control strain. This study demonstrates a biotechnological model for the production of animal feed supplements such as l-cysteine using metabolically engineered C. glutamicum.


Assuntos
Ração Animal/análise , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Cisteína/biossíntese , Aditivos Alimentares/análise , Enxofre/análise , Suplementos Nutricionais/análise , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA