Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioanalysis ; 16(11): 505-517, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864397

RESUMO

The 16th GCC Closed Forum was held in Orlando, FL, USA, on 23 June 2023. Representatives from international bioanalytical Contract Research Organizations were in attendance in order to discuss scientific and regulatory issues specific to bioanalysis. The issues discussed at the meeting included: IS response, flow cytometry, changes to the bioanalytical industry, NGS assays, biomarker assay for tissues, dPCR validation, immunogenicity harmonization and ICH M10 implementation. Conclusions and consensus from discussions of these topics are included in this article.


Assuntos
Biomarcadores , Citometria de Fluxo , Citometria de Fluxo/normas , Citometria de Fluxo/métodos , Biomarcadores/análise , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real/métodos
2.
Development ; 135(3): 523-32, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18171688

RESUMO

Vessel-like networks are quickly formed in subcutaneous FGF2-supplemented Matrigel plugs by two cell types: NG2(+) pericytes and F4/80(+) macrophages. Although not detected in these networks until 7 days after plug implantation, the appearance of CD31(+) endothelial cells marks the onset of vessel perfusion and the establishment of mature vessel morphology, with endothelial cells invested tightly by pericytes and more loosely by macrophages. Evidence that mature vessels develop from pericyte/macrophage networks comes from experiments in which 5-day plugs are transplanted into EGFP(+) recipients and allowed to mature. Fewer than 5% of pericytes in mature vessels are EGFP(+) in this paradigm, demonstrating their presence in the networks prior to plug transplantation. Endothelial cells represent the major vascular cell type recruited during later stages of vessel maturation. Bone marrow transplantation using EGFP(+) donors establishes that almost all macrophages and more than half of the pericytes in Matrigel vessels are derived from the bone marrow. By contrast, only 10% of endothelial cells exhibit a bone marrow origin. The vasculogenic, rather than angiogenic, nature of this neovascularization process is unique in that it is initiated by pericyte and macrophage progenitors, with endothelial cell recruitment occurring as a later step in the maturation process.


Assuntos
Células da Medula Óssea/citologia , Colágeno/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Laminina/metabolismo , Macrófagos/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Pericitos/citologia , Proteoglicanas/metabolismo , Animais , Antígenos CD34/metabolismo , Ataxina-1 , Ataxinas , Biomarcadores/metabolismo , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Combinação de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Citometria de Fluxo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Perfusão , Pericitos/efeitos dos fármacos , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células-Tronco/citologia
3.
Arthritis Rheum ; 48(3): 798-806, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12632435

RESUMO

OBJECTIVE: To examine the mechanism of collagen induction by connective tissue growth factor (CTGF), a profibrotic cytokine overexpressed in the skin of patients with systemic sclerosis (SSc). METHODS: Dermal fibroblasts from 7 SSc patients and 7 matched healthy adult donors were stimulated with CTGF in the presence or absence of the culture-medium supplement, insulin-transferrin-selenium (ITS). Expression of collagen protein was analyzed by a (3)H-proline incorporation assay. To identify the signaling pathways mediating CTGF induction of collagen, pharmacologic inhibitors were used, including rottlerin, a protein kinase C delta (PKC delta) inhibitor. RESULTS: Collagen levels in both SSc and normal fibroblasts were increased after treatment with transforming growth factor beta in serum-free medium, whereas no stimulation was observed following addition of CTGF. In the presence of ITS, CTGF (2.5 ng/ml) potently stimulated collagenous protein levels in SSc cell lines (n = 5); however, CTGF was not stimulatory in the majority of normal fibroblasts (n = 6). ITS alone induced collagen levels in normal fibroblasts to the levels observed in SSc skin fibroblasts, thereby diminishing the hallmark difference in basal collagen levels in these cell types. Insulin was the ITS component responsible for promoting the basal and CTGF stimulation of collagenous proteins. Rottlerin, the PKC delta inhibitor, down-regulated collagen synthesis in normal and SSc fibroblasts cultured in ITS, and inhibited the stimulatory effects of CTGF in cooperation with insulin or of insulin (500 ng/ml) alone. CONCLUSION: Increased responsiveness of SSc fibroblasts to CTGF-mediated collagen synthesis requires the costimulatory activation of insulin signaling pathways to induce matrix production. Blockade of this effect via rottlerin may suggest that PKC delta is a downstream signaling molecule necessary for CTGF stimulation of collagen synthesis.


Assuntos
Colágeno/biossíntese , Fibroblastos/metabolismo , Proteínas Imediatamente Precoces/farmacologia , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Escleroderma Sistêmico/metabolismo , Acetofenonas/farmacologia , Benzopiranos/farmacologia , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Recém-Nascido , Prolina/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteína Quinase C-delta , Escleroderma Sistêmico/patologia , Selênio/farmacologia , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Transferrina/farmacologia
4.
Arthritis Rheum ; 50(5): 1566-77, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15146427

RESUMO

OBJECTIVE: Aberrant transforming growth factor beta (TGFbeta) signaling has been implicated in the pathogenesis of scleroderma (systemic sclerosis [SSc]), but the contribution of specific components in this pathway to SSc fibroblast phenotype remains unclear. This study was undertaken to delineate the role of TGFbeta receptor type I (TGFbetaRI) and TGFbetaRII in collagen overexpression by SSc fibroblasts. METHODS: Primary dermal fibroblasts from SSc patients and healthy adults were studied (n = 10 matched pairs). Adenoviral vectors were generated for TGFbetaRI (AdTGFbetaRI), TGFbetaRII (AdTGFbetaRII), and kinase-deficient TGFbetaRII (AdDeltakRII). TGFbetaRI basal protein levels were analyzed by (35)S-methionine labeling/immunoprecipitation and immunohistochemistry. Type I collagen and TGFbetaRII basal protein levels were analyzed by Western blot and newly secreted collagen by (3)H-proline incorporation assay. RESULTS: Analysis of endogenous TGFbetaRI and TGFbetaRII protein levels revealed that SSc TGFbetaRI levels were increased 1.7-fold (P = 0.008; n = 7) compared with levels in healthy controls, while TGFbetaRII levels were decreased by 30% (P = 0.03; n = 7). This increased TGFbetaRI:TGFbetaRII ratio correlated with SSc collagen overexpression. To determine the consequences of altered TGFbetaRI:TGFbetaRII ratio on collagen expression, healthy fibroblasts were transduced with AdTGFbetaRI or AdTGFbetaRII. Forced expression of TGFbetaRI in the range corresponding to elevated SSc TGFbetaRI levels increased basal collagen expression in a dose-dependent manner, while similar TGFbetaRII overexpression had no effect, although transduction of fibroblasts at higher multiplicities of infection led to a marked reduction of basal collagen levels. Blockade of TGFbeta signaling via AdDeltakRII resulted in approximately 50% inhibition of basal collagen levels in healthy fibroblasts and in 5 of 9 SSc cell lines. A subset of SSc fibroblasts (4 of 9 cell lines) was resistant to this treatment. SSc fibroblasts with the highest levels of TGFbetaRI were the least responsive to collagen inhibition via DeltakRII. CONCLUSION: This study indicates that an increased TGFbetaRI:TGFbetaRII ratio may underlie aberrant TGFbeta signaling in SSc and contribute to elevated basal collagen production, which is insensitive to TGFbeta signaling blockade via DeltakRII.


Assuntos
Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Colágeno/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Adulto , Idoso , Derme/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênese , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Escleroderma Sistêmico/patologia , Transdução de Sinais/fisiologia
5.
Am J Physiol Renal Physiol ; 283(4): F707-16, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12217862

RESUMO

Transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF) are ubiquitously expressed in various forms of tissue fibrosis, including fibrotic diseases of the kidney. To clarify the common and divergent roles of these growth factors in the cells responsible for pathological extracellular matrix (ECM) deposition in renal fibrosis, the effects of TGF-beta and CTGF on ECM expression in primary human mesangial (HMCs) and human proximal tubule epithelial cells (HTECs) were studied. Both TGF-beta and CTGF significantly induced collagen protein expression with similar potency in HMCs. Additionally, alpha(2)(I)-collagen promoter activity and mRNA levels were similarly induced by TGF-beta and CTGF in HMCs. However, only TGF-beta stimulated collagenous protein synthesis in HTECs. HTEC expression of tenascin-C (TN-C) was increased by TGF-beta and CTGF, although TGF-beta was the more potent inducer. Thus both growth factors elicit similar profibrogenic effects on ECM production in HMCs, while promoting divergent effects in HTECs. CTGF induction of TN-C, a marker of epithelial-mesenchymal transdifferentiation (EMT), with no significant induction of collagenous protein synthesis in HTECs, may suggest a more predominant role for CTGF in EMT rather than induction of excessive collagen deposition by HTECs during renal fibrosis.


Assuntos
Substâncias de Crescimento/farmacologia , Proteínas Imediatamente Precoces/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Rim/efeitos dos fármacos , Rim/patologia , Fator de Crescimento Transformador beta/farmacologia , Adenoviridae/genética , Anticorpos Bloqueadores/farmacologia , Northern Blotting , Western Blotting , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Fibrose/induzido quimicamente , Fibrose/patologia , Vetores Genéticos , Mesângio Glomerular/citologia , Mesângio Glomerular/efeitos dos fármacos , Mesângio Glomerular/patologia , Humanos , Rim/citologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Luciferases/genética , Plasmídeos/genética , Prolina/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/isolamento & purificação , Proteínas Recombinantes/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA