Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771001

RESUMO

Persistence and degradation are important factors in determining the safe use of such synthetic products, and numerous studies have been addressed to develop pesticide remediation methods aimed at ameliorating these features. In this frame, the use of different cyclodextrins (CDs) molecules has attracted considerable attention due to their well-known non-toxic nature, limited environmental impact, and capability to reduce the environmental and health risks of pesticides. CDs appear to be a valuable tool for the elimination of pesticides from polluted areas as well as for better pesticide formulations that positively influence their hydrolysis or degradation. The present work investigates the interaction between ß-cyclodextrins and three commonly used pesticides (i.e., chlorpropham, monuron, and propanil) both in solution and in the solid state by means of UV-Vis, FT-IR, and X-ray powder diffractometry. We show that such interactions result in all three cases in the formation of inclusion complexes with a 1:1 stoichiometry and binding constants (Kb) of 369.9 M-1 for chlorpropham, 292.3 M-1 for monuron, and 298.3 M-1 for propanil. We also report the energy-minimized structures in silico for each complex. Our data expand and complement the available literature data in indicating CDs as a low-cost and very effective tool capable of modulating the properties that determine the environmental fate of pesticides.


Assuntos
Ciclodextrinas , Praguicidas , Propanil , beta-Ciclodextrinas , Praguicidas/análise , Clorprofam , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , Ciclodextrinas/química , Solubilidade
2.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049814

RESUMO

The development of new formulations can be driven by the knowledge of host-guest complexes using cyclodextrins which have the ability to include guest molecules within their hydrophobic cavities, improving the physicochemical properties of the guest. To rationally explore new pesticide formulations, the effects of cyclodextrins on the properties of such guest molecules need to be explored. Imidacloprid is a neonicotinoid systemic insecticide used worldwide. In this study, the inclusion complexes of Imidacloprid (IMI) with ß-cyclodextrin (ß-CD) were prepared in the solid state by co-precipitation and the physical mixing method, with a stoichiometry of 1:1 and 1:2 molar ratios. The obtained products, Imidacloprid:ß-cyclodextrin inclusion complex (IMI:ß-CD), were characterized in the solid state by Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffractometry (XRD). In solution, the 1:1 stoichiometry for the inclusion complexes was established by the Job plot method, and the binding constant of IMI:ß-CD was determined by UV-vis titration. The toxicity was determined in producers and primary consumers of the freshwater trophic chain, the green alga Raphidocelis subcapitata and the rotifer Brachionus calyciflorus, respectively. The results indicated that Imidacloprid forms inclusion complexes with CDs showing improved physicochemical properties compared to free Imidacloprid. The formation of the inclusion complex reduced the chronic toxicity in rotifers when IMI concentrations were close to those of environmental concern (tenths/hundredths of micromoles/L). Therefore, CD inclusion complexes could provide important advantages to be considered for the future industrial production of new formulations.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , Ciclodextrinas/química , Neonicotinoides/toxicidade , Difração de Raios X , Varredura Diferencial de Calorimetria , Solubilidade
3.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232306

RESUMO

A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper's interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.


Assuntos
Mercúrio , Zinco , Aminoácidos , Cádmio , Cobre/química , DNA/metabolismo , Íons , Chumbo , Proteínas , Zinco/metabolismo , Dedos de Zinco
4.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167398

RESUMO

The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger ßßßαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.


Assuntos
Cádmio/química , Cobalto/química , Níquel/química , Dobramento de Proteína/efeitos dos fármacos , Proteínas Repressoras , Zinco/química , Agrobacterium tumefaciens , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cádmio/metabolismo , Cádmio/farmacologia , Cobalto/metabolismo , Cobalto/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Níquel/metabolismo , Níquel/farmacologia , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Espectrofotometria Ultravioleta , Termodinâmica , Zinco/metabolismo , Dedos de Zinco
5.
Inorg Chem ; 58(2): 1067-1080, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30596504

RESUMO

Zinc ion binding is a principal event in the achievement of the correct fold in classical zinc finger domains since the motif is largely unfolded in the absence of metal. In the case of a prokaryotic zinc finger, the larger ßßßαα domain contributes to the folding mechanism with a larger hydrophobic core. For these reasons, following the great amount of attention devoted to unveiling the effect of xenobiotic metal ion replacement in zinc fingers and in zinc-containing proteins in general, the prokaryotic zinc finger domain appears to be an interesting model for studying metal ion interaction with metalloproteins. Here, we explore the binding of Ni(II), Hg(II), and Pb(II) to Ros87, the DNA binding domain of the prokaryotic zinc finger protein Ros. We measured Ros87-metal ion dissociation constants and monitored the effects on the structure and function of the domain. Interestingly, we found that the protein folds in the presence of Ni(II) with important structural perturbations, while in the presence of Pb(II) and Hg(II) it does not appear to be significantly folded. Accordingly, an overall strong reduction in the DNA binding capability is observed for all of the examined proteins. Our data integrate and complement the information collected in the past few years concerning the functional and structural effects of metal ion substitution in classical zinc fingers in order to contribute to a better comprehension of the toxicity of these metals in biological systems.


Assuntos
Chumbo/química , Mercúrio/química , Metaloproteínas/química , Níquel/química , Sítios de Ligação , Modelos Moleculares , Dedos de Zinco
6.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669399

RESUMO

Pipemidic acid (HPPA) is a quinolone antibacterial agent used mostly to treat gram-negative infections of the urinary tract, but its therapeutic use is limited because of its low solubility. Thus, to improve drug solubility, natural cyclodextrins (CDs) are used for their ability of including guest molecules within their cavities. The aim of this work was to evaluate the antibacterial activity and the preliminary anticancer activity of HPPA included into Heptakis (2,3,6-tri-O-methyl)-ß-cyclodextrin (TRIMEB) as a possible approach for a new innovative formulation. The inclusion complex of HPPA with TRIMEB was prepared in solid state by the kneading method and confirmed by FT-IR and powered X-ray diffraction. The association in aqueous solutions of pipemidic acid with TRIMEB was investigated by UV-Vis spectroscopy. Job's plots have been drawn by UV-visible spectroscopy to confirm the 1:1 stoichiometry of the host⁻guest assembly. The antibacterial activity of HPPA, TRIMEB and of their complex was tested on Escherichia coli, Pseudomonas aeruginosa, and Staphilococcus aureus. The complex was able to increase 47.36% of the median antibacterial activity of the free HPPA against E. coli (IC50 = 249 µM vs. 473 µM). Furthermore, these samples were tested on HepG-2 and MCF-7. After 72 h, the median tumoral cytotoxicity exerted by the complex was increased by 78.08% and 94.27% for HepG-2 and MCF-7 respectively, showing a stronger bioactivity of the complex than the single HAPPA.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Pipemídico/química , Ácido Pipemídico/farmacologia , beta-Ciclodextrinas/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Molecules ; 21(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916966

RESUMO

Cyclodextrins are natural macrocyclic oligosaccharides able to form inclusion complexes with a wide variety of guests, affecting their physicochemical and pharmaceutical properties. In order to obtain an improvement of the bioavailability and solubility of 5-fluorouracil, a pyrimidine analogue used as chemotherapeutic agent in the treatment of the colon, liver, and stomac cancers, the drug was complexed with alpha- and beta-cyclodextrin. The inclusion complexes were prepared in the solid state by kneading method and characterized by Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffractometry. In solution, the 1:1 stoichiometry for all the inclusion complexes was established by the Job plot method and the binding constants were determined at different pHs by UV-VIS titration. Furthermore, the cytotoxic activity of 5-fluorouracil and its complexation products were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on MCF-7 (breast cancer cell line), Hep G2 (hepatocyte carcinoma cell line), Caco-2 (colon adenocarcinoma cell line), and A-549 (alveolar basal epithelial carcinoma cell line). The results showed that both inclusion complexes increased the 5-fluorouracil capability of inhibiting cell growth. In particular, 5-fluorouracil complexed with beta-cyclodextrin had the highest cytotoxic activity on MCF-7; with alpha-cyclodextrin the highest cytotoxic activity was observed on A-549. The IC50 values were equal to 31 and 73 µM at 72 h, respectively. Our results underline the possibility of using these inclusion complexes in pharmaceutical formulations for improving 5-fluorouracil therapeutic efficacy.


Assuntos
Fluoruracila , Neoplasias/tratamento farmacológico , alfa-Ciclodextrinas , beta-Ciclodextrinas , Células CACO-2 , Fluoruracila/química , Fluoruracila/farmacologia , Células Hep G2 , Humanos , Células MCF-7 , alfa-Ciclodextrinas/química , alfa-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
8.
Biochim Biophys Acta ; 1844(3): 497-504, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389235

RESUMO

The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a ß-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a ßßßαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Metais/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dicroísmo Circular , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos
9.
Amino Acids ; 47(10): 2215-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25985927

RESUMO

Cyclodextrins are commonly used as complexing agents in biological, pharmaceutical, and industrial applications since they have an effect on protein thermal and proteolytic stability, refolding yields, solubility, and taste masking. ß-cyclodextrins (ß-CD), because of their cavity size are a perfectly suited complexing agent for many common guest moieties. In the case of peptide-cyclodextrin and protein-cyclodextrin host-guest complexes the aromatic amino acids are reported to be the principal responsible of the interaction. For these reasons, we have investigated the inclusion properties of nine designed tripeptides, obtained permuting the position of two L-alanines (Ala, A) with that of one L-tryptophan (Trp, W), L-phenylalanine (Phe, F), or L-tyrosine (Tyr, Y), respectively. Interestingly, the position of the aromatic side-chain in the sequence appears to modulate the ß-CD:peptide binding constants, determined via UV-Vis and NMR spectroscopy, which in turn assumes values higher than those reported for the single amino acid. The tripeptides containing a tyrosine showed the highest binding constants, with the central position in the Ac-AYA-NH2 peptide becoming the most favorite for the interaction. A combined NMR and Molecular Docking approach permitted to build detailed complex models, highlighting the stabilizing interactions of the neighboring amino acids backbone atoms with the upper rim of the ß-CD.


Assuntos
Aminoácidos Aromáticos/química , Modelos Moleculares , Fragmentos de Peptídeos/química , beta-Ciclodextrinas/química , Aminoácidos Aromáticos/metabolismo , Humanos , Corpos de Inclusão , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína , beta-Ciclodextrinas/metabolismo
10.
Int J Mol Sci ; 14(7): 13022-41, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23799358

RESUMO

The aptitude of cyclodextrins (CDs) to form host-guest complexes has prompted an increase in the development of new drug formulations. In this study, the inclusion complexes of pipemidic acid (HPPA), a therapeutic agent for urinary tract infections, with native ß-CD were prepared in solid state by kneading method and confirmed by FT-IR and 1H NMR. The inclusion complex formation was also characterized in aqueous solution at different pH via UV-Vis titration and phase solubility studies obtaining the stability constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the respective EC50s and EC90s. The results showed that the antibacterial activity of HPPA:ß-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA and HPPA:ß-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher activity than that of HPPA. The use of ß-CD allows an increase in the aqueous solubility of the drug, its bioavailability and then its bioactivity.


Assuntos
Ácido Pipemídico , beta-Ciclodextrinas , Varredura Diferencial de Calorimetria , Ciclodextrinas/química , Escherichia coli , Humanos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , beta-Ciclodextrinas/química
11.
Molecules ; 17(5): 6056-70, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22614860

RESUMO

An inclusion complex of hydroxymethylferrocene (FeMeOH) with ß-cyclodextrin (ß-CD) was prepared in the solid state by different techniques such as physical mixture, coprecipitation, kneading and freeze-drying. The formation of the inclusion complex was confirmed by X-ray Powder Diffractometry and Fourier Transform-Infrared spectroscopy. In aqueous solution, the 1:1 stoichiometry was established by a Job plot. The inclusion complex formation was also investigated by NMR and the stability constant (Kb) of the complex was determined to be 478 M⁻¹, which is in agreement with that obtained with UV-Vis tritation (Kb = 541.3 M⁻¹). The phase solubility study showed a diagram classified as Bs type and that the solubility of FeMeOH was slightly increased in the presence of ß-CD. Furthermore, utilizing phase solubility diagram data, the Kb was estimated to be equal to 528.0 M⁻¹. The cytotoxic activity of FeMeOH and its complexation product with ß-CD was determined using the MTT-assay on MDA-MB-231 cell line, showing that the inclusion complex has a higher capability of inhibiting cell growth compared to that of pure FeMeOH.


Assuntos
Compostos Ferrosos/química , Compostos Ferrosos/toxicidade , beta-Ciclodextrinas/química , Linhagem Celular Tumoral , Humanos , Solubilidade
12.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230723

RESUMO

Acyclovir (ACV) is one of the most used antiviral drugs for the treatment of herpes simplex virus infections and other relevant mucosal infections caused by viruses. Nevertheless, the low water solubility of ACV limits both its bioavailability and antiviral performance. The combination of block copolymer micelles and cyclodextrins (CDs) may result in polypseudorotaxanes with tunable drug solubilizing and gelling properties. However, the simultaneous addition of various CDs has barely been investigated yet. The aim of this work was to design and characterize ternary combinations of Pluronic® F127 (PF127), αCD and ßCD in terms of polypseudorotaxane formation, rheological behavior, and ACV solubilization ability and controlled release. The formation of polypseudorotaxanes between PF127 and the CDs was confirmed by FT-IR spectroscopy, X-ray diffraction, and NMR spectroscopy. The effects of αCD/ßCD concentration range (0-7% w/w) on copolymer (6.5% w/w) gel features were evaluated at 20 and 37 °C by rheological studies, resulting in changes of the copolymer gelling properties. PF127 with αCD/ßCD improved the solubilization of ACV, maintaining the biocompatibility (hen's egg test on the chorio-allantoic membrane). In addition, the gels were able to sustain acyclovir delivery. The formulation prepared with similar proportions of αCD and ßCD provided a slower and more constant release. The results obtained suggest that the combination of Pluronic with αCD/ßCD mixtures can be a valuable approach to tune the rheological features and drug release profiles from these supramolecular gels.

13.
Sci Rep ; 10(1): 9283, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518326

RESUMO

Ros/MucR is a widespread family of bacterial zinc-finger (ZF) containing proteins that integrate multiple functions such as virulence, symbiosis and/or cell cycle transcription. NMR solution structure of Ros DNA-binding domain (region 56-142, i.e. Ros87) has been solved by our group and shows that the prokaryotic ZF domain shows interesting structural and functional features that differentiate it from its eukaryotic counterpart as it folds in a significantly larger zinc-binding globular domain. We have recently proposed a novel functional model for this family of proteins suggesting that they may act as H-NS-'like' gene silencers. Indeed, the N-terminal region of this family of proteins appears to be responsible for the formation of functional oligomers. No structural characterization of the Ros N-terminal domain (region 1-55) is available to date, mainly because of serious solubility problems of the full-length protein. Here we report the first structural characterization of the N-terminal domain of the prokaryotic ZF family examining by means of MD and NMR the structural preferences of the full-length Ros protein from Agrobacterium tumefaciens.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Ligação a DNA/genética , Domínios Proteicos , Estrutura Secundária de Proteína/genética , Dedos de Zinco/genética , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular
14.
Bioinorg Chem Appl ; 2017: 1527247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29386985

RESUMO

Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

15.
J Inorg Biochem ; 161: 91-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27238756

RESUMO

The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Dedos de Zinco , Zinco/química , Domínios Proteicos
16.
Biopolymers ; 91(12): 1227-35, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19365815

RESUMO

The conjugates of beta-cyclodextrins with R- or with S-Etodolac were characterized by NMR spectroscopy, and S-Etodolac alone was characterized by X-ray diffraction analysis. In solution, the R-Etodolac conjugate is soluble in water; the other epimer shows a very low solubility. The NMR characterization of the R-Etodolac conjugate in D(2)O shows that, in aqueous solution, the Edotolac moiety is self-included in the cavity, while the NMR characterization in MeOH of both conjugates underlines that, in this solvent, the Etodolac moiety is not included in the CD cavity. The X-ray structure determination of the S-Etodolac conjugate reveals a "sleeping swan"-like shape, with the covalently bonded Etodolac moiety being folded with the 8-ethyl group inserted inside the hydrophobic cavity of the beta-CD ring. The terminal methyl group of the 8-ethyl group enters the centre of cavity from the side of the primary hydroxyl groups and is buried inside the beta-CD macrocycle. The terminal methyl group is positioned at a distance of 1.06 A from the O(4) plane in the side of the primary hydroxyl groups. In addition to van der Waals interactions between the hydrophobic ethyl group and the beta-CD cavity, the folded conformation is further stabilized by one intramolecular H-bond involving the indole N-H group and the primary hydroxyl group of the glucose unit 7. Along the b axis, the beta-CD molecules are arranged in columns; the macrocycles form a herring bone pattern, so that the cavity of each beta-CD molecule is closed at each end by neighboring molecules. Within the layers, the beta-CD macrocycles are held together by a complicated intermolecular hydrogen bond network, in which numerous water molecules and hydroxyl groups are involved.


Assuntos
Anti-Inflamatórios não Esteroides/química , Etodolac/química , beta-Ciclodextrinas/química , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Soluções , Estereoisomerismo
17.
Bioorg Med Chem Lett ; 16(23): 6096-101, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16971124

RESUMO

A novel antioxidant prenylated stilbenoid, distachyasin, has been isolated from the leaves of Carex distachya. Its structure has been elucidated on the basis of the spectroscopic characteristics. Bidimensional NMR, and crystallographic data and computational calculations have furnished important data useful for the characterization and the stereochemistry of the molecule. The compound has a tetracyclic skeleton derived from carexane. The compound has been assayed, for the antioxidant activity, by measuring its capacity to scavenge the H(2)O(2), nitric oxide, superoxide radical and to inhibit formation of TBARS (thiobarbituric acid reactive species).


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Carex (Planta)/química , Carex (Planta)/metabolismo , Compostos Policíclicos/química , Compostos Policíclicos/metabolismo , Estilbenos/química , Estilbenos/metabolismo , Radicais Livres/química , Peróxido de Hidrogênio/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Nitritos/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Superóxidos/química , Substâncias Reativas com Ácido Tiobarbitúrico/química , Difração de Raios X
18.
Org Biomol Chem ; 1(17): 3131-7, 2003 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-14518138

RESUMO

Three new resorcin[4]arene-capped porphyrins (3, 5 and 7) different in the porphyrin skeleton, in the linking arms and in the cavity dimensions, have been synthesised. Molecular modelling calculations explored the conformations and the cavity size of the three compounds and showed that their hydrophobic pockets can accommodate one molecule of water or methane (3 and 5), or benzene (7) without any distortion. Notably, the capped porphyrin 5 was able to inhibit the oxidation of Co(II) to Co(III), whereas compound 7 did it only partially.

19.
J Pept Sci ; 10(2): 92-102, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14994987

RESUMO

Astins, antitumour cyclic pentapeptides, were isolated from the Aster tataricus. Their chemical structures, consist of a 16-membered ring system containing a unique beta,gamma-dichlorinated proline [Pro(Cl)2], other non-coded amino acid residues and a cis conformation in one of the peptide bonds. The astin backbone conformation, along with the cis peptide bond in which the beta,gamma-dichlorinated proline residue is involved, was considered to play an important role in their antineoplastic activities on sarcoma 180A and P388 lymphocytic leukaemia in mice, but the scope and potential applications of this activity remain unclear. With the aim at improving our knowledge of the conformational properties influencing the bioactivity in this class of compounds, new astin-related cyclopeptides were synthesized differing from the natural products by the presence of some non-proteinogenic amino acid residues: Aib, Abu, -(S)beta3-hPhe and a peptide bond surrogate (-SO2-NH-). The analogues prepared c(-Pro-Thr-Aib-beta3-Phe-Abu-), c[Pro-Thr-Aib-(S)beta3-hPhe-Abu], c[Pro-Abu-Ser-(S)beta3-hPhe psi(CH2-SO2-NH)-Abu] and c[Pro-Thr-Aib-(S)beta3-hPhe psi(CH2-SO2-NH)-Abu] were synthesized by classical methods in solution and tested for their antitumour effect. These molecules were studied by crystal-state x-ray diffraction analysis and/or solution NMR and MD techniques.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Estrutura Terciária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA