Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Chem ; 17(1): 134, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814299

RESUMO

RATIONALE: Antibiotics have been detected worldwide in the aquatic environment. Moreover, certain classes of antibiotics have been repurposed for the management of COVID-19, which increased their use and presence in wastewater. Their occurrence even in low concentrations leads to the development of antibiotic resistance. METHODOLOGY: Magnetite pectin nanoparticles (MPNP) were fabricated and compared to an established model of mesoporous silica nanoparticles (MSNP). Our studied adsorbate is levofloxacin, a fluoroquinolone antibiotic, commonly used in managing COVID-19 cases. RESULTS: The influence of various factors affecting the adsorption process was studied, such as pH, the type and concentration of the adsorbent, contact time, and drug concentration. The results illustrated that the optimum adsorption capacity for antibiotic clearance from wastewater using MPNP was at pH 4 with a contact time of 4 h; while using MSNP, it was found to be optimum at pH 7 with a contact time of 12 h at concentrations of 10 µg/mL and 16 g/L of the drug and nanoparticles, respectively, showing adsorption percentages of 96.55% and 98.89%. Drug adsorption equilibrium data obeyed the Sips isotherm model. DISCUSSION AND CONCLUSION: HPLC assay method was developed and validated. The experimental results revealed that the MPNP was as efficient as MSNP for removing the antibacterial agent. Moreover, MPNP is eco-friendly (a natural by-product of citrus fruit) and more economic as it could be recovered and reused. The procedure was evaluated according to the greenness assessment tools: AGREE calculator and Hexagon-CALIFICAMET, showing good green scores, ensuring the process's eco-friendliness.

2.
J Toxicol ; 2021: 9954443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422042

RESUMO

Nanoparticles are of great importance in development and research because of their application in industries and biomedicine. The development of nanoparticles requires proper knowledge of their fabrication, interaction, release, distribution, target, compatibility, and functions. This review presents a comprehensive update on nanoparticles' toxic effects, the factors underlying their toxicity, and the mechanisms by which toxicity is induced. Recent studies have found that nanoparticles may cause serious health effects when exposed to the body through ingestion, inhalation, and skin contact without caution. The extent to which toxicity is induced depends on some properties, including the nature and size of the nanoparticle, the surface area, shape, aspect ratio, surface coating, crystallinity, dissolution, and agglomeration. In all, the general mechanisms by which it causes toxicity lie on its capability to initiate the formation of reactive species, cytotoxicity, genotoxicity, and neurotoxicity, among others.

3.
J Colloid Interface Sci ; 552: 9-16, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31100690

RESUMO

HYPOTHESIS: Adsorption of hydrophobically modified ethoxylated urethane polymers (HEURs) at the soft colloid interfaces of emulsion droplets will stabilise oil-in-water emulsions (a) via steric stabilisation induced by adsorption of the polymer at the droplet surfaces through the hydrophobic groups, and (b) via continuous phase viscosity enhancement through polymer self-association. Both of these mechanisms will be modulated by the presence of the surfactant, sodium dodecylsulfate (SDS). EXPERIMENTS: Dodecane-in-water emulsions stabilised by three HEUR polymers with different structural composition were examined in the absence and presence of SDS by NMR spectroscopy and small-angle neutron scattering (SANS). The effect of adsorption of the polymer to the dodecane droplet surfaces, and the conformation of the self-associating polymer in the aqueous solution were quantified. FINDINGS: All emulsions were stable for days-weeks. Diffusion data showed the formation of oil droplets of hundreds of nm in size in the presence of all three HEURs, here denoted C6-L-(EO100-L)9-C6, C10-L-(EO200-L)4-C10, and C18-L-(EO200-L)7-C18, where EOx represents a block of ethylene oxide of x monomers, L denotes the linker group, and Cn the length of the hydrophobic end-group. No significant changes in droplet size across this series of polymers was observed. Collectively, the results point to adsorption of the polymer to the droplet surfaces, which results in a small decrease in the effective polymer solution concentration, thereby driving to significant changes in the structure and dynamics of the system. Evident in the SANS data in particular, is a subtle balance between the characteristic features reflecting polymer self-association, and those associated with polymer structures commensurate with a larger length-scale, dependent on the system composition. Surprisingly, the polymer and polymer/SDS complex in the presence of oil show slightly greater diffusive rates relative to the analogous systems in the absence of the oil. Finally, the partitioning of the three polymers in phase-separated samples was studied by 1H NMR, and it was shown that the C18-L-(EO200-L)7-C18 exhibited a greater partitioning in the oil phase compared with C6-L-(EO100-L)9-C6 and C10-L-(EO200-L)4-C10, an observation that may be understood in terms of the structural composition of the HEURs. The SDS showed a positive correlation between its partitioning in the two layers with the polymer partitioning, evidence of a strong interaction between the surfactant and the polymer, consistent with the behaviour observed in the oil-free system.

4.
J Colloid Interface Sci ; 529: 588-598, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031286

RESUMO

HYPOTHESIS: Hydrophobically modified ethoxylated urethane polymers (HEURs) are widely used to control the rheological profile of formulated particulate dispersions through associative network formation, the properties of which are perturbed by the presence of surfactants. At high polymer concentrations and in the presence of surfactants, it is hypothesised that the dominant factors in determining the rheological profile are the number and composition of the mixed hydrophobic aggregates, these being defined by the number and distribution of the hydrophobic linkers along the polymer backbone, rather than the end-group hydrophobe characteristics per se that dominate the low polymer concentration behaviour. EXPERIMENTS: Three different HEUR polymers with formulae (C6-L-(EO100-L)9-C6, C10-L-(EO200-L)4-C10 and C18-L-(EO200-L)7-C18 (where L = urethane linker, Cn = hydrophobic end-group chain length, and EO = ethylene oxide block) have been studied in the absence and presence of SDS employing techniques that quantify (a) the bulk characteristics of the polymer surfactant blend, (b) the structure and composition of the hydrophobic domains, (c) the dynamics of the polymer and surfactant, and (d) the polymer conformation. Collectively, these experiments demonstrate how molecular-level interactions between the HEURs and sodium dodecylsulfate (SDS) define the macroscopic behaviour of the polymer/surfactant mixture. FINDINGS: Binding of the SDS to the polymer via two mechanisms - monomeric anti-cooperative and micellar cooperative - leads to surfactant-concentration-specific macroscopic changes in the viscosity. Binding of the surfactant to the polymer drives a conformational rearrangement, and an associated redistribution of the polymer end-groups and linker associations throughout the hydrophobic domains. The composition and size of these domains are sensitive to the polymer architecture. Therefore, there is a complex balance between polymer molecular weight, ethylene oxide block size, and number of urethane linkers, coupled with the size of the hydrophobic end-groups. In particular, the urethane linkers are shown to play a hitherto largely neglected but important role in driving the polymer association.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA