Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Conserv Biol ; 36(2): e13807, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34312893

RESUMO

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Austrália , Tamanho Corporal , Pesqueiros , Peixes , Humanos
2.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015863

RESUMO

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Austrália , Ecossistema , Pesqueiros , Peixes , Oceanos e Mares
3.
Biol Conserv ; 256: 108995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580542

RESUMO

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

4.
Mol Ecol ; 28(12): 3053-3072, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31077479

RESUMO

Characterising adaptive genetic divergence among conspecific populations is often achieved by studying genetic variation across defined environmental gradients. In marine systems this is challenging due to a paucity of information on habitat heterogeneity at local and regional scales and a dependency on sampling regimes that are typically limited to broad longitudinal and latitudinal environmental gradients. As a result, the spatial scales at which selection processes operate and the environmental factors that contribute to genetic adaptation in marine systems are likely to be unclear. In this study we explore patterns of adaptive genetic structuring in a commercially- harvested abalone species (Haliotis rubra) from southeastern Australia, using a panel of genome-wide SNP markers (5,239 SNPs), and a sampling regime informed by marine LiDAR bathymetric imagery and 20-year hindcasted oceanographic models. Despite a lack of overall genetic structure across the sampling distribution, significant genotype associations with heterogeneous habitat features were observed at local and regional spatial scales, including associations with wave energy, ocean current, sea surface temperature, and geology. These findings provide insights into the potential resilience of the species to changing marine climates and the role of migration and selection on recruitment processes, with implications for conservation and fisheries management. This study points to the spatial scales at which selection processes operate in marine systems and highlights the benefits of geospatially-informed sampling regimes for overcoming limitations associated with marine population genomic research.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Moluscos/genética , Dinâmica Populacional , Aclimatação/genética , Animais , Austrália , Ecossistema , Variação Genética/genética , Genoma/genética , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único/genética
5.
Biol Lett ; 14(9)2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258032

RESUMO

Researchers are increasingly studying carbon (C) storage by natural ecosystems for climate mitigation, including coastal 'blue carbon' ecosystems. Unfortunately, little guidance on how to achieve robust, cost-effective estimates of blue C stocks to inform inventories exists. We use existing data (492 cores) to develop recommendations on the sampling effort required to achieve robust estimates of blue C. Using a broad-scale, spatially explicit dataset from Victoria, Australia, we applied multiple spatial methods to provide guidelines for reducing variability in estimates of soil C stocks over large areas. With a separate dataset collected across Australia, we evaluated how many samples are needed to capture variability within soil cores and the best methods for extrapolating C to 1 m soil depth. We found that 40 core samples are optimal for capturing C variance across 1000's of kilometres but higher density sampling is required across finer scales (100-200 km). Accounting for environmental variation can further decrease required sampling. The within core analyses showed that nine samples within a core capture the majority of the variability and log-linear equations can accurately extrapolate C. These recommendations can help develop standardized methods for sampling programmes to quantify soil C stocks at national scales.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Solo/química , Austrália , Áreas Alagadas
6.
Oecologia ; 180(3): 657-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26233674

RESUMO

Estimating the degree of individual specialisation is likely to be sensitive to the methods used, as they record individuals' resource use over different time-periods. We combined animal-borne video cameras, GPS/TDR loggers and stable isotope values of plasma, red cells and sub-sampled whiskers to investigate individual foraging specialisation in female Australian fur seals (Arctocephalus pusillus doriferus) over various timescales. Combining these methods enabled us to (1) provide quantitative information on individuals' diet, allowing the identification of prey, (2) infer the temporal consistency of individual specialisation, and (3) assess how different methods and timescales affect our estimation of the degree of specialisation. Short-term inter-individual variation in diet was observed in the video data (mean pairwise overlap = 0.60), with the sampled population being composed of both generalist and specialist individuals (nested network). However, the brevity of the temporal window is likely to artificially increase the level of specialisation by not recording the entire diet of seals. Indeed, the correlation in isotopic values was tighter between the red cells and whiskers (mid- to long-term foraging ecology) than between plasma and red cells (short- to mid-term) (R(2) = 0.93-0.73 vs. 0.55-0.41). δ(13)C and δ(15)N values of whiskers confirmed the temporal consistency of individual specialisation. Variation in isotopic niche was consistent across seasons and years, indicating long-term habitat (WIC/TNW = 0.28) and dietary (WIC/TNW = 0.39) specialisation. The results also highlight time-averaging issues (under-estimation of the degree of specialisation) when calculating individual specialisation indices over long time-periods, so that no single timescale may provide a complete and accurate picture, emphasising the benefits of using complementary methods.


Assuntos
Isótopos de Carbono/análise , Dieta , Comportamento Alimentar/fisiologia , Otárias/fisiologia , Isótopos de Nitrogênio/análise , Vibrissas/química , Gravação em Vídeo , Animais , Austrália , Ecossistema , Eritrócitos/química , Feminino , Estações do Ano , Fatores de Tempo
7.
Conserv Biol ; 28(6): 1636-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25039538

RESUMO

Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km(2) ) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species' use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long-distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA.


Assuntos
Migração Animal , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Tartarugas/fisiologia , Animais , Feminino , Oceano Índico , Ilhas do Oceano Índico
8.
Sci Total Environ ; 890: 164430, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37247743

RESUMO

The role of macroalgae (seaweed) as a global contributor to carbon drawdown within marine sediments - termed 'blue carbon' - remains uncertain and controversial. While studies are needed to validate the potential for macroalgal­carbon sequestration in marine and coastal sediments, fundamental questions regarding the fate of dislodged macroalgal biomass need to be addressed. Evidence suggests macroalgal biomass may be advected and deposited within other vegetated coastal ecosystems and down to the deep ocean; however, contributions to near-shore sediments within coastal waters remain uncertain. In this study a combination of eDNA metabarcoding and surficial sediment sampling informed by seabed mapping from different physical environments was used to test for the presence of macroalgal carbon in near-shore coastal sediments in south-eastern Australia, and the physical factors influencing patterns of macroalgal transport and deposition. DNA products for a total of 68 macroalgal taxa, representing all major macroalgal groups (Phaeophyceae, Rhodophyta, and Chlorophyta) were successfully detected at 112 near-shore locations. These findings confirm the potential for macroalgal biomass to be exported into near-shore sediments and suggest macroalgal carbon donors could be both speciose and diverse. Modelling suggested that macroalgal transport and deposition, and total organic carbon (TOC), are influenced by complex interactions between several physical environmental factors including water depth, sediment grain size, wave orbital velocity, current speed, current direction, and the extent of the infralittoral zone around depositional areas. Extrapolation of the optimised model was used to predict spatial patterns of macroalgal deposition and TOC across the coastline and to identify potentially important carbon sinks. This study builds on recent studies providing empirical evidence for macroalgal biomass deposits in near-shore sediments, and a framework for predicting the spatial distribution of potential carbon sinks and informing future surveys aimed at determining the potential for long-term macroalgal carbon sequestration in marine sediments.


Assuntos
Clorófitas , Rodófitas , Alga Marinha , Ecossistema , Carbono , Sedimentos Geológicos
9.
Data Brief ; 45: 108563, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36148214

RESUMO

A comprehensive dataset of 138 surficial sediment samples retrieved from the shallow marine waters of six secondary compartments off the western coast of Victoria, Australia, is presented. Samples were collected between October 2018 and November 2020 at water depths ranging from four to 55 m using Shipek and Van Veen grabs. Sampling design targeted unconsolidated areas of the seafloor based on bathymetric and seafloor habitat data. Retrieved sediments were subsampled and subject to grain size analysis using a combination of dry sieving and laser diffraction methods, carbonate and organic matter content determination via Loss-on-Ignition, colour description using a Munsell chart, and roundness analysis using microscopic photography. This dataset, the most comprehensive surficial shallow water sedimentary record of the Otway Shelf, serves as a benchmark to understand sediment dynamics and conectivity along the coast, and can be used in environmental and engineering studies to support a range of management decisions.

10.
Sci Rep ; 11(1): 3935, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594157

RESUMO

Sandy beaches are highly dynamic systems which provide natural protection from the impact of waves to coastal communities. With coastal erosion hazards predicted to increase globally, data to inform decision making on erosion mitigation and adaptation strategies is becoming critical. However, multi-temporal topographic data over wide geographical areas is expensive and time consuming and often requires highly trained professionals. In this study we demonstrate a novel approach combining citizen science with low-cost unmanned aerial vehicles that reliably produces survey-grade morphological data able to model sediment dynamics from event to annual scales. The high-energy wave-dominated coast of south-eastern Australia, in Victoria, is used as a field laboratory to test the reliability of our protocol and develop a set of indices to study multi-scale erosional dynamics. We found that citizen scientists provide unbiased data as accurate as professional researchers. We then observed that open-ocean beaches mobilise three times as much sediment as embayed beaches and distinguished between slowed and accelerated erosional modes. The data was also able to assess the efficiency of sand nourishment for shore protection. Our citizen science protocol provides high quality monitoring capabilities, which although subject to important legislative preconditions, it is applicable in other parts of the world and transferable to other landscape systems where the understanding of sediment dynamics is critical for management of natural or anthropogenic processes.

11.
Sci Total Environ ; 800: 149573, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399348

RESUMO

To help mitigate the impacts of climate change, many nature-based solutions are being explored. These solutions involve protection and restoration of ecosystems that serve as efficient carbon sinks, including vegetated coastal ecosystems (VCEs: tidal marshes, mangrove forests, and seagrass meadows) also known as 'Blue Carbon' ecosystems. In fact, many nations are seeking to manage VCEs to help meet their climate change mitigation targets through Nationally Determined Contributions (NDCs). However, incorporation of VCEs into NDCs requires national-scale estimates of contemporary and future blue carbon storage, which has not yet been achieved. Here we address this challenge using machine learning approaches to reliably map (with 62-72% accuracy) soil carbon stocks in VCEs based on geospatial data (topography, geomorphology, climate, and anthropogenic impacts), using Australia as a case study. The resulting maps of soil carbon stocks showed that there is a total of 951 Tg (±65 Tg) of carbon stock within Australian VCEs. Strong relationships between soil carbon stocks and climatic conditions (temperature, rainfall, solar radiation) allowed us to project future changes in carbon storage across all RCP scenarios for the years 2050 and 2090 to determine changes in environmental suitability for soil carbon stocks. Results show that soil carbon stocks in mangrove/tidal marsh ecosystems are likely to predominantly experience declines in carbon stocks under predicted climate change scenarios (19% of ecosystems area is predicted to have an increase in soil carbon stocks, while 38% of ecosystems area is predicted to have a decrease in soil carbon stocks), but a majority of seagrass area is likely to have increased soil carbon stocks (56% increase, 7% decrease). This approach is effective for developing robust national blue carbon inventories and revealing the capacity for blue carbon to help meet NDCs. The resulting spatially-explicit maps can also be used to pinpoint areas for successful blue carbon projects both now and in the future.


Assuntos
Carbono , Ecossistema , Austrália , Carbono/análise , Sequestro de Carbono , Áreas Alagadas
12.
Sci Total Environ ; 777: 145962, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684760

RESUMO

Restoring and protecting "blue carbon" ecosystems - mangrove forests, tidal marshes, and seagrass meadows - are actions considered for increasing global carbon sequestration. To improve understanding of which management actions produce the greatest gains in sequestration, we used a spatially explicit model to compare carbon sequestration and its economic value over a broad spatial scale (2500 km of coastline in southeastern Australia) for four management scenarios: (1) Managed Retreat, (2) Managed Retreat Plus Levee Removal, (3) Erosion of High Risk Areas, (4) Erosion of Moderate to High Risk Areas. We found that carbon sequestration from avoiding erosion-related emissions (abatement) would far exceed sequestration from coastal restoration. If erosion were limited only to the areas with highest erosion risk, sequestration in the non-eroded area exceeded emissions by 4.2 million Mg CO2 by 2100. However, losing blue carbon ecosystems in both moderate and high erosion risk areas would result in net emissions of 23.0 million Mg CO2 by 2100. The removal of levees combined with managed retreat was the strategy that sequestered the most carbon. Across all time points, removal of levees increased sequestration by only an additional 1 to 3% compared to managed retreat alone. Compared to the baseline erosion scenario, the managed retreat scenario increased sequestration by 7.40 million Mg CO2 by 2030, 8.69 million Mg CO2 by 2050, and 16.6 million Mg CO2 by 2100. Associated economic value followed the same patterns, with large potential value loss from erosion greater than potential gains from conserving or restoring ecosystems. This study quantifies the potential benefits of managed retreat and preventing erosion in existing blue carbon ecosystems to help meet climate change mitigation goals by reducing carbon emissions.

13.
PeerJ ; 9: e12608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966597

RESUMO

Knowledge of the factors shaping the foraging behaviour of species is central to understanding their ecosystem role and predicting their response to environmental variability. To maximise survival and reproduction, foraging strategies must balance the costs and benefits related to energy needed to pursue, manipulate, and consume prey with the nutritional reward obtained. While such information is vital for understanding how changes in prey assemblages may affect predators, determining these components is inherently difficult in cryptic predators. The present study used animal-borne video data loggers to investigate the costs and benefits related to different prey types for female Australian fur seals (Arctocephalus pusillus doriferus), a primarily benthic foraging species in the low productivity Bass Strait, south-eastern Australia. A total of 1,263 prey captures, resulting from 2,027 prey detections, were observed in 84.5 h of video recordings from 23 individuals. Substantial differences in prey pursuit and handling times, gross energy gain and total energy expenditure were observed between prey types. Importantly, the profitability of prey was not significantly different between prey types, with the exception of elasmobranchs. This study highlights the benefit of animal-borne video data loggers for understanding the factors that influence foraging decisions in predators. Further studies incorporating search times for different prey types would further elucidate how profitability differs with prey type.

14.
Sci Rep ; 10(1): 5865, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246009

RESUMO

Seagrass meadows are considered important natural carbon sinks due to their capacity to store organic carbon (Corg) in sediments. However, the spatial heterogeneity of carbon storage in seagrass sediments needs to be better understood to improve accuracy of Blue Carbon assessments, particularly when strong gradients are present. We performed an intensive coring study within a sub-tropical estuary to assess the spatial variability in sedimentary Corg associated with seagrasses, and to identify the key factors promoting this variability. We found a strong spatial pattern within the estuary, from 52.16 mg Corg cm-3 in seagrass meadows in the upper parts, declining to 1.06 mg Corg cm-3 in seagrass meadows at the estuary mouth, despite a general gradient of increasing seagrass cover and seagrass habitat extent in the opposite direction. The sedimentary Corg underneath seagrass meadows came principally from allochthonous (non-seagrass) sources (~70-90 %), while the contribution of seagrasses was low (~10-30 %) throughout the entire estuary. Our results showed that Corg stored in sediments of seagrass meadows can be highly variable within an estuary, attributed largely to accumulation of fine sediments and inputs of allochthonous sources. Local features and the existence of spatial gradients must be considered in Blue Carbon estimates in coastal ecosystems.

15.
Sci Total Environ ; 710: 134680, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31927279

RESUMO

Coastal and estuarine ecosystems, such as mangroves, tidal marshes and seagrass meadows, provide a range of ecosystem services, but have seen extensive degradation and decline. Effective protection and rehabilitation of coastal ecosystems requires an understanding of how efforts may improve associated ecosystem services. In this study, we present a spatially-explicit angler catch function to predict boat-based recreational catch as a function of ecosystem and angler characteristics. We developed a choice model to investigate where recreational anglers launch their boats and fish in southeast Australia. By linking the recreational catch models with a choice model, we were able to quantify welfare gains of ecosystem rehabilitation. We found welfare gains across fishing locations varied widely due to heterogeneous coverage of seagrass. The welfare gains of different fishing locations ranged from near-zero in areas of low seagrass coverage, to AU $19.18 (10% increase in seagrass area) and to AU $85.55 (30% increase) per trip in location of high seagrass coverage. Given two million fishing trips occurring per year in Port Phillip Bay, and one million in Western Port, the aggregated welfare gain could scale up to AU $6.2 million with a 10% increase in seagrass coverage, and AU $22 million per annum with a 30% increase in seagrass. We also calculated the welfare loss associated with total loss of seagrass ecosystem in each fishing location to represent the current value, which varied significantly, ranging from near-zero in some locations to AU $87.47 per trip in other locations. Over the past several decades, the bay-wide seagrass ecosystem has dropped by 36.7% in Western Port, resulting in potential welfare loss of an estimated AU $ 86.7 million per annum. Our analyses provide insightful spatial policy implications for coastal and marine ecosystem rehabilitation in the region.

16.
Sci Data ; 6(1): 120, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296871

RESUMO

Here we outline the genesis of Seamap Australia, which integrates spatial data of the seabed of Australia's continental shelf (0-200 m depth) from multiple sources to provide a single national map layer of marine habitat. It is underpinned by a hierarchical classification scheme with registered vocabulary, enabling presentation of nationally consistent information at the highest resolution available for any point in space. The Seamap Australia website enables users to delineate particular areas of interest, overlay habitat maps with many other marine data layers, and to directly access the data and metadata underlying the maps they produce. This unique resource represents a step-change in capacity to access and integrate large and diverse marine data holdings and to readily derive information and products to underpin decision making around marine spatial planning and conservation prioritisation, state-of-environment reporting, and research. It is a world first fully integrated national-scale marine mapping and data service.

17.
Mol Ecol ; 17(24): 5291-314, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19120999

RESUMO

Historical sea levels have been influential in shaping the phylogeography of freshwater-limited taxa via palaeodrainage and palaeoshoreline connections. In this study, we demonstrate an approach to phylogeographic analysis incorporating historical sea-level information in a nested clade phylogeographic analysis (NCPA) framework, using burrowing freshwater crayfish as the model organism. Our study area focuses on the Bass Strait region of southeastern Australia, which is marine region encompassing a shallow seabed that has emerged as a land bridge during glacial cycles connecting mainland Australia and Tasmania. Bathymetric data were analysed using Geographical Information Systems (GIS) to delineate a palaeodrainage model when the palaeocoastline was 150 m below present-day sea level. Such sea levels occurred at least twice in the past 500 000 years, perhaps more often or of larger magnitude within the last 10 million years, linking Victoria and Tasmania. Inter-locality distance measures confined to the palaeodrainage network were incorporated into an NCPA of crayfish (Engaeus sericatus Clark 1936) mitochondrial 16S rDNA haplotypes. The results were then compared to NCPAs using present-day river drainages and traditional great-circle distance measures. NCPA inferences were cross-examined using frequentist and Bayesian procedures in the context of geomorphological and historical sea-level data. We found distribution of present-day genetic variation in E. sericatus to be partly explained not only by connectivity through palaeodrainages but also via present-day drainages or overland (great circle) routes. We recommend that future studies consider all three of these distance measures, especially for studies of coastally distributed species.


Assuntos
Astacoidea/genética , Evolução Molecular , Filogenia , Animais , Austrália , DNA Mitocondrial/genética , Variação Genética , Geografia , Haplótipos , Modelos Genéticos , RNA Ribossômico 16S/genética , Rios , Alinhamento de Sequência , Análise de Sequência de DNA
18.
PeerJ ; 6: e5786, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356954

RESUMO

Global warming is leading to many unprecedented changes in the ocean-climate system. Sea levels are rising at an increasing rate and are amplifying the impact of storm surges along coastlines. As variability in the timing and strength of storm surges has been shown to affect pup mortality in the Australian fur seal (Arctocephalus pusillus doriferus), there is a need to identify the potential impacts of increased sea level and storm surges on the breeding areas of this important marine predator in Bass Strait, south-eastern Australia. Using high-resolution aerial photography and topographic data, the present study assessed the impacts of future inundation levels on both current and potential breeding habitats at each colony. Inundation from storm surges, based on a predicted rise in sea level, was modeled at each colony from 2012 to 2100. As sea level increases, progressively less severe storm surge conditions will be required to exceed current inundation levels and, thus, have the potential for greater impacts on pup mortality at Australian fur seal colonies. The results of the present study indicate that by 2100, a 1-in-10 year storm will inundate more habitat on average than a present-day 1-in-100 year storm. The study highlights the site-specific nature of storm surge impacts, and in particular the importance of local colony topography and surrounding bathymetry with small, low-lying colonies impacted the most. An increased severity of storm surges will result in either an increase in pup mortality rates associated with storm surges, or the dispersal of individuals to higher ground and/or new colonies.

19.
Sci Rep ; 7(1): 10259, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860645

RESUMO

Monitoring of intertidal reefs is traditionally undertaken by on-ground survey methods which have assisted in understanding these complex habitats; however, often only a small spatial footprint of the reef is observed. Recent developments in unmanned aerial vehicles (UAVs) provide new opportunities for monitoring broad scale coastal ecosystems through the ability to capture centimetre resolution imagery and topographic data not possible with conventional approaches. This study compares UAV remote sensing of intertidal reefs to traditional on-ground monitoring surveys, and investigates the role of UAV derived geomorphological variables in explaining observed intertidal algal and invertebrate assemblages. A multirotor UAV was used to capture <1 cm resolution data from intertidal reefs, with on-ground quadrat surveys of intertidal biotic data for comparison. UAV surveys provided reliable estimates of dominant canopy-forming algae, however, understorey species were obscured and often underestimated. UAV derived geomorphic variables showed elevation and distance to seaward reef edge explained 19.7% and 15.9% of the variation in algal and invertebrate assemblage structure respectively. The findings of this study demonstrate benefits of low-cost UAVs for intertidal monitoring through rapid data collection, full coverage census, identification of dominant canopy habitat and generation of geomorphic derivatives for explaining biological variation.

20.
Sci China C Life Sci ; 48 Suppl 1: 118-27, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16089337

RESUMO

Four sites located in the north-eastern region of the United States of America have been chosen to investigate the impacts of soil heterogeneity in the transport of solutes (bromide and chloride) through the vadose zone (the zone in the soil that lies below the root zone and above the permanent saturated groundwater). A recently proposed mathematical model based on the cumulative beta distribution has been deployed to compare and contrast the regions' heterogeneity from multiple sample percolation experiments. Significant differences in patterns of solute leaching were observed even over a small spatial scale, indicating that traditional sampling methods for solute transport, for example the gravity pan or suction lysimeters, or more recent inventions such as the multiple sample percolation systems may not be effective in estimating solute fluxes in soils when a significant degree of soil heterogeneity is present. Consequently, ignoring soil heterogeneity in solute transport studies will likely result in under- or overprediction of leached fluxes and potentially lead to serious pollution of soils and/or groundwater. The cumulative beta distribution technique is found to be a versatile and simple technique of gaining valuable information regarding soil heterogeneity effects on solute transport. It is also an excellent tool for guiding future decisions of experimental designs particularly in regard to the number of samples within one site and the number of sampling locations between sites required to obtain a representative estimate of field solute or drainage flux.


Assuntos
Poluentes do Solo/análise , Solo/análise , Poluentes da Água/análise , Brometos/análise , Cloretos/análise , Delaware , Modelos Teóricos , New York , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA