Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(44): 16940-16952, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37886817

RESUMO

Harnessing the potential of specific antibiotic-degrading microalgal strains to optimize microalgal-bacterial granular sludge (MBGS) technology for sustainable antibiotic wastewater treatment and antibiotic resistance genes (ARGs) mitigation is currently limited. This article examined the performance of bacterial granular sludge (BGS) and MBGS (of Haematococcus pluvialis, an antibiotic-degrading microalga) systems in terms of stability, nutrient and antibiotic removal, and fate of ARGs and mobile genetic elements (MGEs) under multiclass antibiotic loads. The systems exhibited excellent performance under none and 50 µg/L mixed antibiotics and a decrease in performance at a higher concentration. The MBGS showed superior potential, higher nutrient removal, 53.9 mg/L/day higher chemical oxygen demand (COD) removal, and 5.2-8.2% improved antibiotic removal, notably for refractory antibiotics, and the system removal capacity was predicted. Metagenomic analysis revealed lower levels of ARGs and MGEs in effluent and biomass of MBGS compared to the BGS bioreactor. Particle association niche and projection pursuit regression models indicated that microalgae in MBGS may limit gene transfers among biomass and effluent, impeding ARG dissemination. Moreover, a discrepancy was found in the bacterial antibiotic-degrading biomarkers of BGS and MBGS systems due to the microalgal effect on the microcommunity. Altogether, these findings deepened our understanding of the microalgae's value in the MBGS system for antibiotic remediation and ARG propagation control.


Assuntos
Antibacterianos , Microalgas , Antibacterianos/farmacologia , Águas Residuárias , Esgotos/microbiologia , Genes Bacterianos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
2.
J Environ Manage ; 341: 117986, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172350

RESUMO

Increased urbanization and anthropogenic activities can alter dissolved organic matter (DOM) and complicate its interaction with bacteria in rivers' ecosystems, however, there is limited information about how bacterial communities respond to DOM components in rivers with different urbanization levels. Here, we combined spectroscopy-based DOM analysis and 16S rRNA gene amplicon sequencing to investigate the associations of bacterial taxa and DOM properties as well as the impacts of DOM on bacterial niche breadth in North River (NR) and West River (WR) of Jiulong River watershed, southern China, which had low and high urbanization levels, respectively. Spectroscopy analysis showed that hydrophilic DOM was predominant in both rivers whereas chromophoric DOM was higher in WR. Network analysis indicated that only seven bacterial genera (i.e., hg clade, chthoniobacter, Geobacter, Acidibacter, Alphal Cluster, Fluviicola, and Lacunisphaera) showed strong associations with DOM optical variables in both rivers, whereas more than 85% of DOM-bacterial genera associations were different between rivers. These results suggest that the relationship between DOM and bacterial communities had different responses in rivers with different urbanization levels. The partial least square path model indicated that the total standardized effect of physico-chemicals on bacterial niche breadth was higher in NR (0.62) than in WR (0.35), whereas humic substances showed an opposite pattern (NR: -0.42; WR: 1.67). The distinct effects of physico-chemicals and DOM on bacterial niche breadths between rivers could be due to the different effects of urbanization and human activities on the environmental conditions of riverine ecosystems. Our findings revealed a huge dissimilarity in the bacteria-DOM co-occurrence networks between rivers with different urbanization levels and provide a novel insight that urbanization may enhance DOM's importance to bacterial niche breadths.


Assuntos
Matéria Orgânica Dissolvida , Rios , Humanos , Rios/química , Ecossistema , Urbanização , RNA Ribossômico 16S/genética , Bactérias/genética , Espectrometria de Fluorescência
3.
J Environ Manage ; 326(Pt B): 116737, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403459

RESUMO

Dissolved organic matter (DOM), known as a key to the aquatic carbon cycle, is influenced by abiotic and biotic factors. However, the compositional variation and these factors' effects on fluorescence DOM (FDOM) in urban rivers undergoing different anthropogenic pressure are poorly investigated. Herein, using fluorescence excitation-emission matrix and parallel factor analysis (EEM-PARAFAC), four FDOM components (C1, C2, C3, and C4) were identified in a less urbanized north river (NR) and a more urbanized west river (WR) of Jiulong River Watershed in Fujian province, China. C1, C2, and C4 were related to humic-like substances (HLS) and C3 to protein-like substances (PLS). HLS (63.9% in WR and 36.4% in NR) and PLS (62.7% in WR and 37.3% in NR) exhibited higher fluorescence in the more urbanized river. We also found higher PLS in winter, but higher HLS in summer for both rivers. Although the coefficient of variation indicated a difference in FDOM components stability to some extent between the two rivers, the typhoon event that occurred in summer had a stronger disruptive impact on the CDOM and FDOM of a more urbanized river than that of a less urbanized river. We explore abiotic and biotic factors' effects on FDOM using the partial least squares path model (PLS-PM). PLS-PM results revealed higher significant influences of biotic factors on FDOM in the more urbanized river. This study enhances our understanding of FDOM dynamics of rivers with different anthropogenic pressure together with the abiotic and biotic factors driving them.


Assuntos
Matéria Orgânica Dissolvida , Rios , Substâncias Húmicas/análise , Análise Fatorial , Estações do Ano , China , Espectrometria de Fluorescência
4.
Environ Monit Assess ; 189(12): 625, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29124371

RESUMO

Nowadays, sewage sludge and water bodies are subjected to heavy pollution due to rapid population growth and urbanization. Heavy metal pollution represents one of the main challenges threatening our environment and the ecosystem. The present work aims to evaluate the contamination state of the sewage sludge and lake sediments in the Republic of Benin. Twenty metallic elements including 15 rare earth elements (Eu, Sb, Cs, Nd, Pr, Gd, La, Ce, Tb, Sm, Dy, Ho, Eu, Yb, and Lu) and five precious elements (Ag, Au, Pd, Pt, and Ru) were investigated using inductive plasma-mass spectrometry. Results showed broad range concentrations of the elements. Ce, La, and Nd were present in both sediments and sewage sludge at concentrations ranging 5.80-41.30 mg/kg dry matter (DM), 3.23-15.60 mg/kg DM, and 2.74-19.26 mg/kg DM, respectively. Pr, Sm, Gd, Tb, Dy, Eu, Er, Yb, Cs, Ho, and Tm concentrations were lower (0.02-5.94 mg/kg DM). Among precious elements, Ag was detected at the highest concentration in all sites (0.43-4.72 mg/kg DM), followed by Pd (0.20-0.57 mg/kg DM) and Au (0.01-0.57 mg/kg DM). Ru and Pt concentrations were < 0.20 mg/kg DM in all samples. Pollution indices and enrichment factor indicated a strong to severe enrichment of the elements, mainly Ce and precious elements in both sediments and sewage sludge. This revealed a growing anthropogenic input which was also implied by principal component analysis. The evaluation of pollution loading index (PLI) indicated a moderate to strong contamination (0.12 ≤ PLI ≤ 0.58; 37 ≤ PLI ≤ 114, respectively, for rare earth elements and precious elements), while the degree of contamination indicated a moderate polymetallic contamination for rare earth elements and significant contamination for precious elements.


Assuntos
Monitoramento Ambiental , Metais Terras Raras/análise , Esgotos/química , Poluentes Químicos da Água/análise , Benin , Ecossistema , Sedimentos Geológicos/química , Lagos/análise , Lagos/química , Espectrometria de Massas/métodos , Metais Pesados/análise , Esgotos/análise
5.
Sci Total Environ ; 915: 170122, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232840

RESUMO

Antibiotic pollution and the evolution of antibiotic resistance genes (ARGs) are increasingly viewed as major threats to both ecosystem security and human health, and have drawn attention. This study investigated the fate of antibiotics in aqueous and sedimentary substrates and the impact of ecosystem shifts between water and sedimentary phases on resistome profiles. The findings indicated notable variations in the concentration and distribution patterns of antibiotics across various environmental phases. Based on the partition coefficient (Kd), the total antibiotic concentration was significantly greater in the surface water (1405.45 ng/L; 49.5 %) compared to the suspended particulate matter (Kd = 0.64; 892.59 ng/g; 31.4 %) and sediment (Kd = 0.4; 542.64 ng/g; 19.1 %). However, the relative abundance of ARGs in surface water and sediment was disproportionate to the abundance of antibiotics concentration, and sediments were the predominant ARGs reservoirs. Phylogenetic divergence of the microbial communities between the surface water and the sedimentary ecosystems potentially played important roles in driving the ARGs profiles between the two distinctive ecosystems. ARGs of Clinical importance; including blaGES, MCR-7.1, ermB, tet(34), tet36, tetG-01, and sul2 were significantly increased in the surface water, while blaCTX-M-01, blaTEM, blaOXA10-01, blaVIM, tet(W/N/W), tetM02, and ermX were amplified in the sediments. cfxA was an endemic ARG in surface-water ecosystems while the endemic ARGs of the sedimentary ecosystems included aacC4, aadA9-02, blaCTX-M-04, blaIMP-01, blaIMP-02, bla-L1, penA, erm(36), ermC, ermT-01, msrA-01, pikR2, vgb-01, mexA, oprD, ttgB, and aac. These findings offer a valuable information for the identification of ARGs-specific high-risk reservoirs.


Assuntos
Genes Bacterianos , Água , Humanos , Ecossistema , Filogenia , Rios , Antibacterianos/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-36833771

RESUMO

Heavy metal pollution in urban soil continues to be a global issue that poses a serious hazard to invertebrates and human lives through oral ingestion and inhalation of soil particles. Though the toxicity of several heavy metals on invertebrates like Collembola has been studied, lead (Pb) and cadmium (Cd) have been extensively studied due to their high toxicity to collembolans. As a ubiquitous soil organism all over the world, collembolans have been used as a model species to study the effects of heavy metals on invertebrate communities. To reduce the effects of heavy metals on ecosystem functions, biotic and abiotic measures have been used for heavy metal remediation; biochar seems to be the most effective approach that not only increases the physical absorption of heavy metals but also indirectly benefits soil organisms. In this study, we briefly reviewed the application of biochar in Pb and Cd polluted soil and showed its potential in soil remediation. Furthermore, we outlined the potentially toxic effects of Pb- and Cd-polluted urban soil on the collembolan species. We searched peer-reviewed publications that investigated: (1) the level of Pb and Cd contamination on urban soil in different cities around the world; and (2) the different sources of Pb and Cd as well as factors influencing their toxicity to collembolan communities. The obtained information offers new perspectives on the interactions and effects between collembolans, Pb, and Cd, and their remediation in urban soils.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio , Ecossistema , Solo , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal
7.
Environ Int ; 178: 108118, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37517178

RESUMO

The influence of vertical changes in water depth on emerging pollutants distribution and microbial food web remains elusive. We investigated the influence of vertical transition in water depth on the environmental variables, antibiotics and antibiotic resistomes, and microbial community structures in estuary and marine ecosystems (0-50 m). Stepwise multiple linear regression model showed that among investigated environmental variables, change in water salinity was the most influential factor dictating the fluoroquinolone and macrolides concentrations, while dissolved oxygen and turbidity were the key influencers of sulfonamides and beta-lactam concentrations, respectively. Bacterial and eukaryotic diversity and niche breadth significantly increased with the increasing water depth. Ecosystem food web structure at the bottom depths was more stable than at the middle and surface depths. At the surface depth, the top 5 keystone genera were Cryothecomonas, Syndiniales, Achromobacter, Pseudopirsonia, and Karlodinium. Whereas Eugregarinorida, Neptuniibacter, Mychonastes, Novel_Apicomplexa_Class_1, Aplanochytrium and Dietzia, Halodaphnea, Luminiphilus, Aplanochytrium, Maullinia dominated the top 5 genera at the middle and the bottom depth, respectively. Absolute abundance of antibiotic resistance genes (ARGs) was drastically increased at the surface depth compared with the middle and bottom depths. Abundance of the top 10 ARGs and mobile genetic elements (MGEs) detected including tnpA-05, aadA2-03, mexF, aadA1, intI-1(clinic), qacEdelta1-02, aadA-02, qacEdelta1-01, cmlA1-01, and aadA-01 were amplified at the surface depth. This study demonstrated that ARGs abundance was disproportionate to bacterial diversity, and anthropogenic disturbances, confinement, MGEs, and ecosystem stability play primary roles in the fate of ARGs. The findings of this study also implicate that vertical changes in the water depth on environmental conditions can influence antibiotic concentrations and microbial community dramatically.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Antibacterianos/análise , Água , Cadeia Alimentar , Genes Bacterianos , Estuários , Bactérias/genética
8.
Sci Total Environ ; 851(Pt 2): 158369, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049676

RESUMO

The changes in the aquatic environmental conditions often influence the microbial community assemblages and genome repertoire. Studies investigating the aquatic diversity and ecosystem services were primarily conducted in horizontal environments while neglecting the microbial phylogenetic divergences, biotrophic interactions, and eco-sustainability at water vertical layers. We investigated the mechanisms of microbial transitions, and the ecological significance of water depth layers in the estuary and marine ecosystems. The results demonstrated that the salinity and turbidity increased with increasing water depth (0-50 m), while temperature and pH decreased significantly. The bacterial and eukaryotic diversity and composition significantly increased with an elevating water depth. Bacterial phyla such as Desulfobacterota, Acidobacteriota, Myxococcota, Gemmatimonadota, Campilobacterota, and Latescibacterota were increased significantly. However, niche preference occurred, and some microbes showed differential nestedness at water vertical layers. In the eukaryotic community, Eustigmatales group were the only clades predominantly phylogenetically nested at the surface water depth. c_Conoidasida, o_Gregarinasina, f_Eugregarinorida, and g_Lankesteria were the most predominant at the middle depth. While Mediophyceae clades, p_SAR, and the Animalia clades were the most predominant groups nested at the bottom depths. The microbial interaction, structure, and stability were increased with increasing depth. The vertical phylogenetic turnover of the microbial community was related to the feeding mechanisms. Phototrophic organisms were particularly adapted at the surface, and middle depth by parasitic and pathogenic organisms, while the bottom was inhabited by diatoms, decomposers, and detritus protists. This study demonstrated that the bottom depth was the most ecologically stable area with more profound ecosystem services.


Assuntos
Diatomáceas , Microbiota , Ecossistema , Estuários , Filogenia , Bactérias , Eucariotos , Água , Biodiversidade
9.
Environ Int ; 166: 107382, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803076

RESUMO

The effects of microalgal biofouling on microplastic (MP) may differ from bacterial biofouling. In this study, the influence of microalgae on MP surface alteration, structural change, and adsorption of organic micropollutants was evaluated. Virgin polyethylene (PE), polyvinyl chloride (PVC), and polyamide (PA) were each immersed in algal photobioreactor and river freshwater for 30 days to simulate algal and river microbe biofouling respectively. Consequently, their physicochemical changes and adsorption potential of a mixture of six bisphenol analogues (BPA, BPS, BPE, BPB, BPF, BPAF) and two parabens (propyl-paraben, benzyl-paraben) were investigated. Owing to the algal bioactive compounds, major microalgae-induced biofouling and more MP aging than the river microbe aging were observed through fractures, pits, cracks, and algal attachments. Intrusion of algal organic matter and scission of polymeric functional groups were revealed during microalgal immersion and the potential MP aging pathways were proposed. Algal biofouling considerably altered the intrinsic properties of the MPs, consequently the adsorption capacity of PE and PVC was enhanced by 3.04-6.72 and 2.14-8.72 times, respectively. Adsorption process onto algal-aged MPs was pH-dependent, endothermic, non-spontaneous, and favored by hydrogen bonds. Meanwhile, the amide group in PA structure was conducive to organic micropollutant adsorption, which was likely reduced by algal aging and the erosion of the N-H stretching. Moreover, higher adsorption capacities of organic micropollutants were shown by the algal-biofilm PE and PVC than virgin and river microbial biofilm MPs. This study discloses that, biofouling and aging of MPs by microalgae through their bioactive components would engender more incidences on MP properties, organic micropollutants adsorption with associated environmental and health hazards.


Assuntos
Microalgas , Poluentes Químicos da Água , Microplásticos , Plásticos , Parabenos , Adsorção , Polietileno/farmacologia , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA