Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Model Softw ; 109: 93-103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31595145

RESUMO

Cyanobacterial harmful algal blooms (cyanoHAB) cause human and ecological health problems in lakes worldwide. The timely distribution of satellite-derived cyanoHAB data is necessary for adaptive water quality management and for targeted deployment of water quality monitoring resources. Software platforms that permit timely, useful, and cost-effective delivery of information from satellites are required to help managers respond to cyanoHABs. The Cyanobacteria Assessment Network (CyAN) mobile device application (app) uses data from the European Space Agency Copernicus Sentinel-3 satellite Ocean and Land Colour Instrument (OLCI) in near realtime to make initial water quality assessments and quickly alert managers to potential problems and emerging threats related to cyanobacteria. App functionality and satellite data were validated with 25 state health advisories issued in 2017. The CyAN app provides water quality managers with a user-friendly platform that reduces the complexities associated with accessing satellite data to allow fast, efficient, initial assessments across lakes.

2.
Sci Total Environ ; 822: 153568, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35114225

RESUMO

Reservoirs are dominant features of the modern hydrologic landscape and provide vital services. However, the unique morphology of reservoirs can create suitable conditions for excessive algae growth and associated cyanobacteria blooms in shallow in-flow reservoir locations by providing warm water environments with relatively high nutrient inputs, deposition, and nutrient storage. Cyanobacteria harmful algal blooms (cyanoHAB) are costly water management issues and bloom recurrence is associated with economic costs and negative impacts to human, animal, and environmental health. As cyanoHAB occurrence varies substantially within different regions of a water body, understanding in-lake cyanoHAB spatial dynamics is essential to guide reservoir monitoring and mitigate potential public exposure to cyanotoxins. Cloud-based computational processing power and high temporal frequency of satellites enables advanced pixel-based spatial analysis of cyanoHAB frequency and quantitative assessment of reservoir headwater in-flows compared to near-dam surface waters of individual reservoirs. Additionally, extensive spatial coverage of satellite imagery allows for evaluation of spatial trends across many dozens of reservoir sites. Surface water cyanobacteria concentrations for sixty reservoirs in the southern U.S. were estimated using 300 m resolution European Space Agency (ESA) Ocean and Land Colour Instrument (OLCI) satellite sensor for a five year period (May 2016-April 2021). Of the reservoirs studied, spatial analysis of OLCI data revealed 98% had more frequent cyanoHAB occurrence above the concentration of >100,000 cells/mL in headwaters compared to near-dam surface waters (P < 0.001). Headwaters exhibited greater seasonal variability with more frequent and higher magnitude cyanoHABs occurring mid-summer to fall. Examination of reservoirs identified extremely high concentration cyanobacteria events (>1,000,000 cells/mL) occurring in 70% of headwater locations while only 30% of near-dam locations exceeded this threshold. Wilcoxon signed-rank tests of cyanoHAB magnitudes using paired-observations (dates with observations in both a reservoir's headwater and near-dam locations) confirmed significantly higher concentrations in headwater versus near-dam locations (p < 0.001).


Assuntos
Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Hidrologia , Lagos , Imagens de Satélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA