Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 16(12): 1225-1232, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28920938

RESUMO

Ionic liquids are composed of equal quantities of positive and negative ions. In the bulk, electrical neutrality occurs in these liquids due to Coulombic ordering, in which ion shells of alternating charge form around a central ion. Their structure under confinement is far less well understood. This hinders the widespread application of ionic liquids in technological applications. Here we use scattering experiments to resolve the structure of a widely used ionic liquid (EMI-TFSI) when it is confined inside nanoporous carbons. We show that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. Instead, equally charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering is further enhanced in the presence of an applied external electric potential. This finding opens the door for the design of better materials for electrochemical applications.

2.
Langmuir ; 33(3): 680-684, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045538

RESUMO

As-synthesized [Zn2(Oxac) (Taz)2]·(H2O)2.5, referred to as ZOTW2.5, was prepared from aqueous methanol solutions of Zn5(CO3)2(OH)6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW2.5 was pretreated at 383 K and 1 mPa for tpt h, ZOTWx(tpth). ZOTWx(≥3h) showed a type I adsorption isotherm for N2 at 77 K having a saturation amount (Vs) of 180 mg/g, but that pretreated shortly showed only 1/10 in Vs. CO2 was adsorbed at 303 K in sigmoid on nonporous ZOTWx(≤2h) and in Langmuir-type on ZOTWx(≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N2 adsorption on ZOTWx(≤2h)deCO2, degassed after CO2 adsorption on ZOTWx(≤2h), was promoted 5-fold from 180 mg/g on ZOTWx(tpth) and ZOTWx(≥3h)deCO2 up to ca. 1000 mg/g. The interaction of CO2 and H2O molecules in micropores may lead to a new route for micropore formation.

3.
Langmuir ; 31(1): 180-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25522121

RESUMO

This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium-smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium-montmorillonite system but showed no effect on benzylammonium-saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.


Assuntos
Silicatos de Alumínio/química , Cafeína/metabolismo , Água/química , Adsorção , Bentonita/química , Cafeína/química , Argila , Modelos Moleculares , Silicatos/química
4.
Nat Commun ; 15(1): 3585, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678034

RESUMO

Graphene oxide (GO) is the one of the most promising family of materials as atomically thin membranes for water-related molecular separation technologies due to its amphipathic nature and layered structure. Here, we show important aspects of GO on water adsorption from molecular dynamics (MD) simulations, in-situ X-ray diffraction (XRD) measurements, and ex-situ nuclear magnetic resonance (NMR) measurements. Although the MD simulations for GO and the reduced GO models revealed that the flexibility of the interlayer spacing could be attributed to the oxygen-functional groups of GO, the ultra-large GO model cannot well explain the observed swelling of GO from XRD experiments. Our MD simulations propose a realistic GO interlayer structure constructed by staggered stacking of flexible GO sheets, which can explain very well the swelling nature upon water adsorption. The transmission electron microscopic (TEM) observation also supports the non-regular staggered stacking structure of GO. Furthermore, we demonstrate the existence of the two distinct types of adsorbed water molecules in the staggered stacking: water bonded with hydrophilic functional groups and "free" mobile water. Finally, we show that the staggered stacking of GO plays a crucial role in H/D isotopic recognition in water adsorption, as well as the high mobility of water molecules.

5.
Phys Chem Chem Phys ; 14(2): 981-6, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22124384

RESUMO

The density and intermolecular structure of water in carbon micropores (w = 1.36 nm) are investigated by small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) measurements between 20 K and 298 K. The SAXS results suggest that the density of the water in the micropores increased with increasing temperature over a wide temperature range (20-277 K). The density changed by 10%, which is comparable to the density change of 7% between bulk ice (I(c)) at 20 K and water at 277 K. The results of XRD at low temperatures (less than 200 K) show that the water forms the cubic ice (I(c)) structure, although its peak shape and radial distribution functions changed continuously to those of a liquid-like structure with increasing temperature. The SAXS and XRD results both showed that the water in the hydrophobic nanospaces had no phase transition point. The continuous structural change from ice I(c) to liquid with increasing temperature suggests that water shows negative thermal expansion over a wide temperature range in hydrophobic nanospaces. The combination of XRD and SAXS measurements makes it possible to describe confined systems in nanospaces with intermolecular structure and density of adsorbed molecular assemblies.

6.
ACS Appl Mater Interfaces ; 14(27): 31131-31139, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35763438

RESUMO

Quinone-based aromatic compounds have been studied as electrode materials for various energy-storage devices. However, the relatively large activation barrier of the charge-transfer process of these redox-active molecules causes sluggish reactions and a decrease in energy efficiency. To lower the activation barrier, aromatic compounds must be strongly adsorbed on the electrode surface, preferably via π-π stacking interactions. Molecules in slit-shaped micropores strongly adsorb on the graphitic walls, thus experiencing unique micropore-confinement properties. In this study, the micropore-confinement effect is extended to the adsorption of quinone-based redox-active molecules in 0.8 nm slit-shaped micropores of activated carbon, which produces a drastic reduction in the activation barrier of the charge-transfer process and creates a zero-overpotential redox reaction. The property originates from the short distance (approximately 0.3 nm) between the quinone molecules and the graphitic wall due to the strong adsorption of the aromatic compound. Our results provide the first demonstration that the micropore-confinement effect can reduce and nearly eliminate the activation barrier of an electrochemical reaction. We also demonstrate the applicability of this approach via the charge/discharge performance of a two-electrode cell. Cells comprising the aromatic compound/activated carbon material as positive and negative electrodes exhibit a greater retention capacity than those without activated carbon. The technique described herein can guide the development of high-performance, rapid charging/discharging electrodes for energy-storage devices such as batteries, supercapacitors, and hybrid devices using organic materials.

7.
J Am Chem Soc ; 133(27): 10344-7, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21667920

RESUMO

An outstanding compression function for materials preparation exhibited by nanospaces of single-walled carbon nanohorns (SWCNHs) was studied using the B1-to-B2 solid phase transition of KI crystals at 1.9 GPa. High-resolution transmission electron microscopy and synchrotron X-ray diffraction examinations provided evidence that KI nanocrystals doped in the nanotube spaces of SWCNHs at pressures below 0.1 MPa had the super-high-pressure B2 phase structure, which is induced at pressures above 1.9 GPa in bulk KI crystals. This finding of the supercompression function of the carbon nanotubular spaces can lead to the development of a new compression-free route to precious materials whose syntheses require the application of high pressure.

8.
Phys Chem Chem Phys ; 13(38): 17222-33, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21879058

RESUMO

The freezing mechanism of water contacted with mesoporous silicas with uniform pore shapes, both cylindrical and cagelike, was studied by thermodynamic and structural analyses with differential scanning calorimetry (DSC) and X-ray diffraction (XRD) together with adsorption measurements. In the DSC data extra exothermic peaks were found at around 230 K for water confined in SBA-15, in addition to that due to the freezing of pore water. These peaks are most likely to be ascribed to the freezing of water present over the micropore and/or mesopore outlets of coronas in SBA-15. Freezing of water confined in SBA-16 was systematically analysed by DSC with changing the pore size. The freezing temperature was found to be around 232 K, close to the homogeneous nucleation temperature of bulk water, independent of the pore size when the pore diameter (d) < 7.0 nm. Water confined in the cagelike pores of SBA-16 is probably surrounded by a water layer (boundary water) at the outlets of channels to interconnect the pores and of fine corona-like pores, which is similar to that present at the outlet of cylindrical pores in MCM-41 and of cylindrical channels in SBA-15. The presence of the boundary water would be a key for water in SBA-16 to freeze at the homogeneous nucleation temperature. This phenomenon is similar to those well known for water droplets in oil and water droplets of clouds in the sky. The XRD data showed that the cubic ice I(c) was formed in SBA-16 as previously found in SBA-15 when d < 8.0 nm.

9.
J Am Chem Soc ; 132(7): 2112-3, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20121090

RESUMO

The effect of addition of tetraethylammonium tetrafluoroborate (Et(4)NBF(4)) on the structure of propylene carbonate (PC) confined in slit-shaped carbon nanopores of activated carbon fiber (pore width = 1.0 nm) was studied by synchrotron X-ray diffraction and reverse Monte Carlo simulation. PC molecules are randomly packed in the slit carbon nanopores of 1 nm in the absence of Et(4)NBF(4). Addition of Et(4)N(+) and BF(4)(-) ions promotes formation of considerably ordered double layers of PC molecules even in the highly restricted slit pore space. PC molecules can accept these ions efficiently. This structural modulation function of PC molecular assemblies should contribute to the evolution of supercapacitance in carbon nanopores.

10.
J Phys Chem Lett ; 11(1): 21-25, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31809046

RESUMO

An ionic liquid, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA TFSI), was transformed from a liquid phase to another fluidic phase by application of the threshold magnetic field at constant temperature (T). The magnetic-field-induced (MFI) phase transformation was detected by the electric potential generated between two Pt electrodes set to the bottom and upper parts in a TMPA TFSI liquid during sweep of the magnetic field (B). The magnetic susceptibility and Verdet constant of TMPA TFSI also were slightly changed over 3 T. The MFI phase formation was almost completed within 3 h after TMPA TFSI liquid was exposed to a 6 T magnetic field, as demonstrated by the melting behavior of TMPA TFSI solid frozen instantaneously under 6 T. Multivariate analysis of the Raman spectra suggested that the MFI transformation should be associated with the conformational change of the transoid-to-cisoidlike species of TFSI ions. A B-T phase diagram of TMPA TFSI is proposed.

11.
ACS Omega ; 5(38): 24890-24897, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015508

RESUMO

Fabricating large, high-crystalline-quality single-crystal samples of hexagonal ferrite Ba(Fe1-x Sc x )12O19 is the first important step to elucidating its helimagnetic structure and developing it for further applications. In this study, single crystals of Ba(Fe1-x Sc x )12O19 of various Sc concentrations x were successfully grown by the spontaneous crystallization method using Na2O-Fe2O3 flux. We determined the optimal starting composition of reagents for Ba(Fe1-x Sc x )12O19 growth as a function of x. In situ monitoring of the crystal nucleus generation accelerated the success of crystal growth. The obtained crystals comprised black and lamellate structures with a size of 13 mm × 8 mm × 2 mm and a surface of {001} orientation. X-ray diffraction and elemental analysis revealed that the obtained crystals were composed of single-phase Ba(Fe1-x Sc x )12O19 of high crystalline quality. The lattice constants a and c increased linearly with increasing x, thereby following Vegard's law. The temperature dependence of magnetization and the magnetization curves at 77 K of the x = 0.128 crystal exhibited behavior characteristics of helimagnetism. Neutron diffraction measurements of the x = 0.128 crystal exhibited magnetic satellite reflection peaks below 211 K, providing evidence that Ba(Fe1-x Sc x )12O19 behaves as a helimagnetic material.

12.
J Phys Chem B ; 121(28): 6919-6925, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28644023

RESUMO

The kinetics of caffeine uptake into the interlayer nanospace of silicate nanosheets modified with benzylammonium (BA) was evaluated by in situ monitoring the basal spacing in aqueous media using transmission X-ray diffraction. An interlayer spacing of 0.58 nm in water before caffeine uptake indicates a monomolecular layer of BA and a few water layers in each interlayer. The interlayer space expanded by 0.10 nm upon caffeine uptake (intercalation) and saturated even in the presence of excess caffeine. Time-course profiles of the interlayer spacing and the uptake amount after injection of caffeine into the water slurry were obtained. At the initial period, the plot for the basal spacing was located above that for the adsorbed amount, suggesting that the rate of the interlayer spacing change was faster than that to attain the adsorption equilibrium. A first-order kinetic simulation fitted to the profile also indicates that the basal spacing included a rapid expansion of 0.08 nm within a few minutes and a slow expansion of 0.02 nm over several hours. Regarding the slow component, the rate constant for the basal spacing was lower than that for the amount of caffeine adsorbed, meaning that a steady-state basal spacing is reached after the adsorption equilibrium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA