Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 151(2): 565-571.e9, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36216080

RESUMO

BACKGROUND: The signal transducer and activator of transcription 6 (STAT6) signaling pathway plays a central role in allergic inflammation. To date, however, there have been no descriptions of STAT6 gain-of-function variants leading to allergies in humans. OBJECTIVE: We report a STAT6 gain-of-function variant associated with early-onset multiorgan allergies in a family with 3 affected members. METHODS: Exome sequencing and immunophenotyping of T-helper cell subsets were conducted. The function of the STAT6 protein was analyzed by Western blot, immunofluorescence, electrophoretic mobility shift assays, and luciferase assays. Gastric organoids obtained from the index patient were used to study downstream effector cytokines. RESULTS: We identified a heterozygous missense variant (c.1129G>A;p.Glu377Lys) in the DNA binding domain of STAT6 that was de novo in the index patient's father and was inherited by 2 of his 3 children. Severe atopic dermatitis and food allergy were key presentations. Clinical heterogeneity was observed among the affected individuals. Higher levels of peripheral blood TH2 lymphocytes were detected. The mutant STAT6 displayed a strong preference for nuclear localization, increased DNA binding affinity, and spontaneous transcriptional activity. Moreover, gastric organoids showed constitutive activation of STAT6 downstream signaling molecules. CONCLUSIONS: A germline STAT6 gain-of-function variant results in spontaneous activation of the STAT6 signaling pathway and is associated with an early-onset and severe allergic phenotype in humans. These observations enhance our knowledge of the molecular mechanisms underlying allergic diseases and will potentially contribute to novel therapeutic interventions.


Assuntos
Hipersensibilidade Alimentar , Mutação com Ganho de Função , Criança , Humanos , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Citocinas/metabolismo , DNA
2.
Asian Pac J Allergy Immunol ; 42(2): 105-122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710647

RESUMO

Signal Transducer and Activator of Transcription (STAT) proteins play pivotal roles in immune regulation. The dysregulation of these proteins, attributed to both gain-of-function (GOF) and loss-of-function (LOF) variants, has emerged as a substantial and intricate area of research. This comprehensive review delves into the intricate details of the diverse clinical spectrum associated with STAT variants and the immunological findings linked to these genetic alterations. Although this review does not encompass the treatment of each individual disease, we discuss investigative approaches ranging from immunophenotyping assessment to evaluation of STAT protein activity. These investigations play a crucial role in identifying affected patients and understanding the complexities of STAT.


Assuntos
Mutação com Ganho de Função , Fatores de Transcrição STAT , Humanos , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/imunologia , Mutação com Perda de Função , Imunogenética/métodos , Predisposição Genética para Doença , Animais
3.
Asian Pac J Allergy Immunol ; 40(4): 422-434, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36681659

RESUMO

BACKGROUND: Neanderthals were a species of archaic humans that became extinct around 40,000 years ago. Modern humans have inherited 1-6% of Neanderthal DNA as a result of interbreeding. These inherited Neanderthal genes have paradoxical influences, while some can provide protection to viral infections, some others are associated with autoimmune/auto-inflammatory diseases. OBJECTIVE: We aim to investigate whether genetic variants with strong detrimental effects on the function of the immune system could have potentially contributed to the extinction of the Neanderthal population. METHODS: We used the publically available genome information from an Altai Neanderthal and filtered for potentially damaging variants present in genes associated with inborn errors of immunity (IEI) and checked whether these variants were present in the genomes of the Denisovan, Vindija and Chagyrskaya Neanderthals. RESULTS: We identified 24 homozygous variants and 15 heterozygous variants in IEI-related genes in the Altai Neanderthal. Two homozygous variants in the UNC13D gene and one variant in the MOGS gene were present in all archaic genomes. Defects in the UNC13D gene are known to cause a severe and often fatal disease called hemophagocytic lymphohistiocystosis (HLH). One of these variants p.(N943S) has been reported in patients with HLH. Variants in MOGS are associated with glycosylation defects in the immune system affecting the susceptibility for infections. CONCLUSIONS: Although the exact functional impact of these three variants needs further elucidation, we speculate that they could have resulted in an increased susceptibility to severe diseases and may have contributed to the extinction of Neanderthals after exposure to specific infections.


Assuntos
Homem de Neandertal , Humanos , Animais , Homem de Neandertal/genética , Genoma , Genoma Humano , Proteínas de Membrana/genética
4.
Proc Natl Acad Sci U S A ; 115(8): 1901-1906, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432186

RESUMO

A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N-linked glycans, a process conditional on the introduction of consensus amino acid motifs (N-glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.


Assuntos
Região Variável de Imunoglobulina/genética , Anticorpos , Anticorpos Monoclonais , Afinidade de Anticorpos , Artrite Reumatoide/imunologia , Autoanticorpos , Linfócitos B/metabolismo , Glicosilação , Humanos , Imunoglobulina G/genética
5.
J Immunol ; 198(10): 4156-4165, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28416602

RESUMO

Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: the demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analyzes the frequency and patterns of SHM, Ag selection (including BASELINe), clonality (Change-O), and CSR. The functionality of the ARGalaxy tool is illustrated in several clinical examples of patients with primary immunodeficiencies. In conclusion, ARGalaxy is a novel tool for the analysis of the complete immune repertoire, which is applicable to many patient groups with disturbances in the immune repertoire such as autoimmune diseases, allergy, and leukemia, but it can also be used to address basic research questions in repertoire formation and selection.


Assuntos
Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Software , Biologia Computacional/métodos , Humanos , Internet , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Hipermutação Somática de Imunoglobulina
6.
Immun Ageing ; 16: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485252

RESUMO

BACKGROUND: Aging is known to induce immunosenescence, resulting in alterations in both the innate and adaptive immune system. Here we evaluated the effects of aging on B cell subsets in peripheral blood of 155 immunologically healthy individuals in four age categories (range 20-95y) via multi-parameter flow cytometry. Furthermore, we studied the naive and antigen-experienced B cell receptor (BCR) repertoire of different age groups and compared it to the clonal BCR repertoire of chronic lymphocytic leukemia (CLL), a disease typically presenting in elderly individuals. RESULTS: Total numbers and relative frequencies of B cells were found to decline upon aging, with reductions in transitional B cells, memory cell types, and plasma blasts in the 70 + y group. The BCR repertoire of naive mature B cells and antigen-experienced B cells did not clearly alter until age 70y. Clear changes in IGHV gene usage were observed in naive mature B cells of 70 + y individuals, with a transitional pattern in the 50-70y group. IGHV gene usage of naive mature B cells of the 50-70y, but not the 70 + y, age group resembled that of both younger (50-70y) and older (70 + y) CLL patients. Additionally, CLL-associated stereotypic BCR were found as part of the healthy control BCR repertoire, with an age-associated increase in frequency of several stereotypic BCR (particularly subsets #2 and #5). CONCLUSION: Composition of the peripheral B cell compartment changes with ageing, with clear reductions in non-switched and CD27 + IgG+ switched memory B cells and plasma blasts in especially the 70 + y group. The BCR repertoire is relatively stable until 70y, whereafter differences in IGHV gene usage are seen. Upon ageing, an increasing trend in the occurrence of particular CLL-associated stereotypic BCR is observed.

7.
J Allergy Clin Immunol ; 142(5): 1589-1604.e11, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751004

RESUMO

BACKGROUND: The actin-interacting protein WD repeat-containing protein 1 (WDR1) promotes cofilin-dependent actin filament turnover. Biallelic WDR1 mutations have been identified recently in an immunodeficiency/autoinflammatory syndrome with aberrant morphology and function of myeloid cells. OBJECTIVE: Given the pleiotropic expression of WDR1, here we investigated to what extent it might control the lymphoid arm of the immune system in human subjects. METHODS: Histologic and detailed immunologic analyses were performed to elucidate the role of WDR1 in the development and function of B and T lymphocytes. RESULTS: Here we identified novel homozygous and compound heterozygous WDR1 missense mutations in 6 patients belonging to 3 kindreds who presented with respiratory tract infections, skin ulceration, and stomatitis. In addition to defective adhesion and motility of neutrophils and monocytes, WDR1 deficiency was associated with aberrant T-cell activation and B-cell development. T lymphocytes appeared to develop normally in the patients, except for the follicular helper T-cell subset. However, peripheral T cells from the patients accumulated atypical actin structures at the immunologic synapse and displayed reduced calcium flux and mildly impaired proliferation on T-cell receptor stimulation. WDR1 deficiency was associated with even more severe abnormalities of the B-cell compartment, including peripheral B-cell lymphopenia, paucity of B-cell progenitors in the bone marrow, lack of switched memory B cells, reduced clonal diversity, abnormal B-cell spreading, and increased apoptosis on B-cell receptor/Toll-like receptor stimulation. CONCLUSION: Our study identifies a novel role for WDR1 in adaptive immunity, highlighting WDR1 as a central regulator of actin turnover during formation of the B-cell and T-cell immunologic synapses.


Assuntos
Linfócitos B/imunologia , Sinapses Imunológicas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Adulto , Criança , Feminino , Humanos , Masculino , Mutação , Adulto Jovem
8.
Am J Hum Genet ; 96(3): 412-24, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25728776

RESUMO

Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation.


Assuntos
Proteínas de Ligação a DNA/genética , Nanismo Hipofisário/genética , Nanismo/genética , Microcefalia/genética , Mutação , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Campo Pulsado , Exoma , Fácies , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Fenótipo , Conformação Proteica , Imunodeficiência Combinada Severa/genética
10.
J Clin Immunol ; 38(1): 35-44, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29098565

RESUMO

Bloom's syndrome (BS) is an autosomal recessive disease, caused by mutations in the BLM gene. This gene codes for BLM protein, which is a helicase involved in DNA repair. DNA repair is especially important for the development and maturation of the T and B cells. Since BLM is involved in DNA repair, we aimed to study if BLM deficiency affects T and B cell development and especially somatic hypermutation (SHM) and class switch recombination (CSR) processes. Clinical data of six BS patients was collected, and immunoglobulin serum levels were measured at different time points. In addition, we performed immune phenotyping of the B and T cells and analyzed the SHM and CSR in detail by analyzing IGHA and IGHG transcripts using next-generation sequencing. The serum immunoglobulin levels were relatively low, and patients had an increased number of infections. The absolute number of T, B, and NK cells were low but still in the normal range. Remarkably, all BS patients studied had a high percentage (20-80%) of CD4+ and CD8+ effector memory T cells. The process of SHM seems normal; however, the Ig subclass distribution was not normal, since the BS patients had more IGHG1 and IGHG3 transcripts. In conclusion, BS patients have low number of lymphocytes, but the immunodeficiency seems relatively mild since they have no severe or opportunistic infections. Most changes in the B cell development were seen in the CSR process; however, further studies are necessary to elucidate the exact role of BLM in CSR.


Assuntos
Linfócitos B/fisiologia , Síndrome de Bloom/diagnóstico , Síndromes de Imunodeficiência/diagnóstico , Mutação/genética , RecQ Helicases/genética , Linfócitos T/fisiologia , Adulto , Síndrome de Bloom/genética , Diferenciação Celular , Criança , Reparo do DNA , Feminino , Humanos , Imunoglobulina A/genética , Switching de Imunoglobulina , Imunoglobulina G/genética , Síndromes de Imunodeficiência/genética , Imunofenotipagem , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Hipermutação Somática de Imunoglobulina
11.
Blood ; 127(18): 2193-202, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26907631

RESUMO

Fas is a transmembrane receptor involved in the maintenance of tolerance and immune homeostasis. In murine models, it has been shown to be essential for deletion of autoreactive B cells in the germinal center. The role of Fas in human B-cell selection and in development of autoimmunity in patients carrying FAS mutations is unclear. We analyzed patients with either a somatic FAS mutation or a germline FAS mutation and somatic loss-of-heterozygosity, which allows comparing the fate of B cells with impaired vs normal Fas signaling within the same individual. Class-switched memory B cells showed: accumulation of FAS-mutated B cells; failure to enrich single V, D, J genes and single V-D, D-J gene combinations of the B-cell receptor variable region; increased frequency of variable regions with higher content of positively charged amino acids; and longer CDR3 and maintenance of polyreactive specificities. Importantly, Fas-deficient switched memory B cells showed increased rates of somatic hypermutation. Our data uncover a defect in B-cell selection in patients with FAS mutations, which has implications for the understanding of the pathogenesis of autoimmunity and lymphomagenesis of autoimmune lymphoproliferative syndrome.


Assuntos
Síndrome Linfoproliferativa Autoimune/imunologia , Subpopulações de Linfócitos B/imunologia , Seleção Clonal Mediada por Antígeno , Mutação , Receptor fas/fisiologia , Apoptose , Autoimunidade , Linhagem Celular Transformada , Transformação Celular Neoplásica , Criança , Códon sem Sentido , Feminino , Mutação da Fase de Leitura , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Memória Imunológica , Perda de Heterozigosidade , Masculino , Análise de Sequência de DNA , Hipermutação Somática de Imunoglobulina , Recombinação V(D)J , Receptor fas/deficiência , Receptor fas/genética
12.
Blood ; 128(5): 650-9, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27281794

RESUMO

Repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining pathway (NHEJ) is important not only for repair of spontaneous breaks but also for breaks induced in developing lymphocytes during V(D)J (variable [V], diversity [D], and joining [J] genes) recombination of their antigen receptor loci to create a diverse repertoire. Mutations in the NHEJ factor XLF result in extreme sensitivity for ionizing radiation, microcephaly, and growth retardation comparable to mutations in LIG4 and XRCC4, which together form the NHEJ ligation complex. However, the effect on the immune system is variable (mild to severe immunodeficiency) and less prominent than that seen in deficiencies of NHEJ factors ARTEMIS and DNA-dependent protein kinase catalytic subunit, with defects in the hairpin opening step, which is crucial and unique for V(D)J recombination. Therefore, we aimed to study the role of XLF during V(D)J recombination. We obtained clinical data from 9 XLF-deficient patients and performed immune phenotyping and antigen receptor repertoire analysis of immunoglobulin (Ig) and T-cell receptor (TR) rearrangements, using next-generation sequencing in 6 patients. The results were compared with XRCC4 and LIG4 deficiency. Both Ig and TR rearrangements showed a significant decrease in the number of nontemplated (N) nucleotides inserted by terminal deoxynucleotidyl transferase, which resulted in a decrease of 2 to 3 amino acids in the CDR3. Such a reduction in the number of N-nucleotides has a great effect on the junctional diversity, and thereby on the total diversity of the Ig and TR repertoire. This shows that XLF has an important role during V(D)J recombination in creating diversity of the repertoire by stimulating N-nucleotide insertion.


Assuntos
Enzimas Reparadoras do DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Nucleotídeos/metabolismo , Recombinação V(D)J/genética , Animais , Antígenos/metabolismo , Regiões Determinantes de Complementaridade/genética , DNA Nucleotidilexotransferase/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rearranjo Gênico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulinas/genética , Camundongos , Radiação Ionizante , Receptores de Antígenos de Linfócitos T/genética
13.
Immunol Cell Biol ; 95(9): 744-752, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28546550

RESUMO

The mechanisms involved in sequential immunoglobulin G (IgG) class switching are still largely unknown. Sequential IG class switching is linked to higher levels of somatic hypermutation (SHM) in vivo, but it remains unclear if these are generated temporally during an immune response or upon activation in a secondary response. We here aimed to uncouple these processes and to distinguish memory B cells from primary and secondary immune responses. SHM levels and IgG subclasses were studied with 454 pyrosequencing on blood mononuclear cells from young children and adults as models for primary and secondary immunological memory. Additional sequencing and detailed immunophenotyping with IgG subclass-specific antibodies was performed on purified IgG+ memory B-cell subsets. In both children and adults, SHM levels were higher in transcripts involving more downstream-located IGHG genes (esp. IGHG2 and IGHG4). In adults, SHM levels were significantly higher than in children, and downstream IGHG genes were more frequently utilized. This was associated with increased frequencies of CD27+IgG+ memory B cells, which contained higher levels of SHM, more IGHG2 usage, and higher expression levels of activation markers than CD27-IgG+ memory B cells. We conclude that secondary immunological memory accumulates with age and these memory B cells express CD27, high levels of activation markers, and carry high SHM levels and frequent usage of IGHG2. These new insights contribute to our understanding of sequential IgG subclass switching and show a potential relevance of using serum IgG2 levels or numbers of IgG2-expressing B cells as markers for efficient generation of memory responses.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Imunoglobulina G/metabolismo , Memória Imunológica , Leucócitos Mononucleares/imunologia , Adulto , Células Cultivadas , Criança , Humanos , Switching de Imunoglobulina , Imunofenotipagem , Ativação Linfocitária , Fenótipo , Hipermutação Somática de Imunoglobulina , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
16.
J Allergy Clin Immunol ; 137(2): 517-526.e3, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26441229

RESUMO

BACKGROUND: Severe combined immunodeficiency (SCID) represents congenital disorders characterized by a deficiency of T cells caused by arrested development in the thymus. Yet the nature of these developmental blocks has remained elusive because of the difficulty of taking thymic biopsy specimens from affected children. OBJECTIVE: We sought to identify the stages of arrest in human T-cell development caused by various major types of SCID. METHODS: We performed transplantation of SCID CD34(+) bone marrow stem/progenitor cells into an optimized NSG xenograft mouse model, followed by detailed phenotypic and molecular characterization using flow cytometry, immunoglobulin and T-cell receptor spectratyping, and deep sequencing of immunoglobulin heavy chain (IGH) and T-cell receptor δ (TRD) loci. RESULTS: Arrests in T-cell development caused by mutations in IL-7 receptor α (IL7RA) and IL-2 receptor γ (IL2RG) were observed at the most immature thymocytes much earlier than expected based on gene expression profiling of human thymocyte subsets and studies with corresponding mouse mutants. T-cell receptor rearrangements were functionally required at the CD4(-)CD8(-)CD7(+)CD5(+) stage given the developmental block and extent of rearrangements in mice transplanted with Artemis-SCID cells. The xenograft model used is not informative for adenosine deaminase-SCID, whereas hypomorphic mutations lead to less severe arrests in development. CONCLUSION: Transplanting CD34(+) stem cells from patients with SCID into a xenograft mouse model provides previously unattainable insight into human T-cell development and functionally identifies the arrest in thymic development caused by several SCID mutations.


Assuntos
Diferenciação Celular , Imunodeficiência Combinada Severa/etiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Antígenos de Superfície/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Feminino , Rearranjo Gênico , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Xenoenxertos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Imunofenotipagem , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Mutação , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/embriologia
18.
Clin Immunol ; 161(2): 120-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26325596

RESUMO

PURPOSE: Deficiencies in CD19 and CD81 (forming the CD19-complex with CD21 and CD225) cause a severe clinical phenotype. One CD21 deficient patient has been described. We present a second CD21 deficient patient, with a mild clinical phenotype and compared the immunobiological characteristics of CD21 and CD19 deficiency. METHODS: CD21 deficiency was characterized by flowcytometric immunophenotyping and sequencing. Real-time PCR, in vitro stimulation and next generation sequencing were used to characterize B-cell responses and affinity maturation in CD21(-/-) and CD19(-/-) B cells. RESULTS: A compound heterozygous mutation in CD21 caused CD21 deficiency. CD21(-/-) B cells responded normally to in vitro stimulation and AID was transcribed. Affinity maturation was less affected by CD21 than by CD19 deficiency. CONCLUSIONS: Both CD21 and CD19 deficiencies cause hypogammaglobulinemia and reduced memory B cells. CD19 deficiency causes a more severe clinical phenotype. B-cell characteristics reflect this, both after in vitro stimulation as in affinity maturation.


Assuntos
Antígenos CD19/imunologia , Síndromes de Imunodeficiência/imunologia , Receptores de Complemento 3d/deficiência , Receptores de Complemento 3d/imunologia , Adolescente , Agamaglobulinemia/imunologia , Linfócitos B/imunologia , Estudos de Casos e Controles , Humanos , Memória Imunológica/imunologia , Imunofenotipagem , Masculino , Mutação/imunologia , Transdução de Sinais/imunologia
19.
J Allergy Clin Immunol ; 133(4): 1124-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24418478

RESUMO

BACKGROUND: V(D)J recombination takes place during lymphocyte development to generate a large repertoire of T- and B-cell receptors. Mutations in recombination-activating gene 1 (RAG1) and RAG2 result in loss or reduction of V(D)J recombination. It is known that different mutations in RAG genes vary in residual recombinase activity and give rise to a broad spectrum of clinical phenotypes. OBJECTIVE: We sought to study the immunologic mechanisms causing the clinical spectrum of RAG deficiency. METHODS: We included 22 patients with similar RAG1 mutations (c.519delT or c.368_369delAA) resulting in N-terminal truncated RAG1 protein with residual recombination activity but presenting with different clinical phenotypes. We studied precursor B-cell development, immunoglobulin and T-cell receptor repertoire formation, receptor editing, and B- and T-cell numbers. RESULTS: Clinically, patients were divided into 3 main categories: T(-)B(-) severe combined immunodeficiency, Omenn syndrome, and combined immunodeficiency. All patients showed a block in the precursor B-cell development, low B- and T-cell numbers, normal immunoglobulin gene use, limited B- and T-cell repertoires, and slightly impaired receptor editing. CONCLUSION: This study demonstrates that similar RAG mutations can result in similar immunobiological effects but different clinical phenotypes, indicating that the level of residual recombinase activity is not the only determinant for clinical outcome. We postulate a model in which the type and moment of antigenic pressure affect the clinical phenotypes of these patients.


Assuntos
Estudos de Associação Genética , Proteínas de Homeodomínio/genética , Mutação , Fenótipo , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Pré-Escolar , Regiões Determinantes de Complementaridade/genética , Expressão Gênica , Genótipo , Proteínas de Homeodomínio/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Lactente , Recém-Nascido , Contagem de Linfócitos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Recombinação V(D)J
20.
BMC Immunol ; 15: 59, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25495099

RESUMO

BACKGROUND: Sequence analysis of immunoglobulin heavy chain (IGH) gene rearrangements and frequency analysis is a powerful tool for studying the immune repertoire, immune responses and immune dysregulation in health and disease. The challenge is to provide user friendly, secure and reproducible analytical services that are available for both small and large laboratories which are determining VDJ repertoire using NGS technology. RESULTS: In this study we describe ImmunoGlobulin Galaxy (IGGalaxy)- a convenient web based application for analyzing next-generation sequencing results and reporting IGH gene rearrangements for both repertoire and clonality studies. IGGalaxy has two analysis options one using the built in igBLAST algorithm and the second using output from IMGT; in either case repertoire summaries for the B-cell populations tested are available. IGGalaxy supports multi-sample and multi-replicate input analysis for both igBLAST and IMGT/HIGHV-QUEST. We demonstrate the technical validity of this platform using a standard dataset, S22, used for benchmarking the performance of antibody alignment utilities with a 99.9 % concordance with previous results. Re-analysis of NGS data from our samples of RAG-deficient patients demonstrated the validity and user friendliness of this tool. CONCLUSIONS: IGGalaxy provides clinical researchers with detailed insight into the repertoire of the B-cell population per individual sequenced and between control and pathogenic genomes. IGGalaxy was developed for 454 NGS results but is capable of analyzing alternative NGS data (e.g. Illumina, Ion Torrent). We demonstrate the use of a Galaxy virtual machine to determine the VDJ repertoire for reference data and from B-cells taken from immune deficient patients. IGGalaxy is available as a VM for download and use on a desktop PC or on a server.


Assuntos
Bases de Dados de Ácidos Nucleicos , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Síndromes de Imunodeficiência/genética , Análise de Sequência de DNA/métodos , Software , Humanos , Síndromes de Imunodeficiência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA