Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(5): 950-968.e14, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202574

RESUMO

A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.


Assuntos
GTP Fosfo-Hidrolases , Transdução de Sinais , Animais , Cristalografia por Raios X , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/metabolismo , Nucleotídeos , Proteínas
2.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452850

RESUMO

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína SOS1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem da Célula , Endoderma/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(37): e2408104121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231207

RESUMO

Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Intrinsicamente Desordenadas , Prolina , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Prolina/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Humanos , Processamento de Proteína Pós-Traducional , Espectroscopia de Ressonância Magnética/métodos
4.
Cell ; 141(1): 117-28, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20371349

RESUMO

The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD(core)) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD(core). Single-residue mutations within the JMD(core)-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete "dynamic" and "static" binding sites.


Assuntos
Caderinas/química , Caderinas/metabolismo , Cateninas/química , Cateninas/metabolismo , Adesão Celular , Animais , Caderinas/genética , Cateninas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Camundongos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , delta Catenina
5.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33468626

RESUMO

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Sinalização do Cálcio , Proteínas de Neoplasias , Pancreatite Crônica , Molécula 1 de Interação Estromal , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
6.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851405

RESUMO

Cadherin-mediated cell adhesion requires anchoring via the ß-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin.


Assuntos
Caderinas , Células Endoteliais , Citoesqueleto de Actina , Actinas/genética , Caderinas/genética , Junções Intercelulares , Vinculina , alfa Catenina/genética
7.
Protein Expr Purif ; 212: 106361, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652393

RESUMO

DiRAS3, also called ARHI, is a RAS (sub)family small GTPase protein that shares 50-60% sequence identity with H-, K-, and N-RAS, with substitutions in key conserved G-box motifs and a unique 34 amino acid extension at its N-terminus. Unlike the RAS proto-oncogenes, DiRAS3 exhibits tumor suppressor properties. DiRAS3 function has been studied through genetics and cell biology, but there has been a lack of understanding of the biochemical and biophysical properties of the protein, likely due to its instability and poor solubility. To overcome this solubility issue, we engineered a DiRAS3 variant (C75S/C80S), which significantly improved soluble protein expression in E. coli. Recombinant DiRAS3 was purified by Ni-NTA and size exclusion chromatography (SEC). Concentration dependence of the SEC chromatogram indicated that DiRAS3 exists in monomer-dimer equilibrium. We then produced truncations of the N-terminal (ΔN) and both (ΔNC) extensions to the GTPase domain. Unlike full-length DiRAS3, the SEC profiles showed that ΔNC is monomeric while ΔN was monomeric with aggregation, suggesting that the N and/or C-terminal tail(s) contribute to dimerization and aggregation. The 1H-15N HSQC NMR spectrum of ΔNC construct displayed well-dispersed peaks similar to spectra of other GTPase domains, which enabled us to demonstrate that DiRAS3 has a GTPase domain that can bind GDP and GTP. Taken together, we conclude that, despite the substitutions in the G-box motifs, DiRAS3 can switch between nucleotide-bound states and that the N- and C-terminal extensions interact transiently with the GTPase domain in intra- and inter-molecular fashions, mediating weak multimerization of this unique small GTPase.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas ras , Escherichia coli/genética , Aminoácidos , Biofísica
8.
Cell ; 135(1): 110-22, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18854159

RESUMO

Stromal interaction molecule-1 (STIM1) activates store-operated Ca2+ entry (SOCE) in response to diminished luminal Ca2+ levels. Here, we present the atomic structure of the Ca2+-sensing region of STIM1 consisting of the EF-hand and sterile alpha motif (SAM) domains (EF-SAM). The canonical EF-hand is paired with a previously unidentified EF-hand. Together, the EF-hand pair mediates mutually indispensable hydrophobic interactions between the EF-hand and SAM domains. Structurally critical mutations in the canonical EF-hand, "hidden" EF-hand, or SAM domain disrupt Ca2+ sensitivity in oligomerization via destabilization of the entire EF-SAM entity. In mammalian cells, EF-SAM destabilization mutations within full-length STIM1 induce punctae formation and activate SOCE independent of luminal Ca2+. We provide atomic resolution insight into the molecular basis for STIM1-mediated SOCE initiation and show that the folded/unfolded state of the Ca2+-sensing region of STIM is crucial to SOCE regulation.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Animais , Sinalização do Cálcio/genética , Análise Mutacional de DNA , Motivos EF Hand , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Alinhamento de Sequência , Molécula 1 de Interação Estromal
9.
Proc Natl Acad Sci U S A ; 117(22): 12101-12108, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414921

RESUMO

Membrane anchoring of farnesylated KRAS is critical for activation of RAF kinases, yet our understanding of how these proteins interact on the membrane is limited to isolated domains. The RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF engage KRAS and the plasma membrane, unleashing the kinase domain from autoinhibition. Due to experimental challenges, structural insight into this tripartite KRAS:RBD-CRD:membrane complex has relied on molecular dynamics simulations. Here, we report NMR studies of the KRAS:CRAF RBD-CRD complex. We found that the nucleotide-dependent KRAS-RBD interaction results in transient electrostatic interactions between KRAS and CRD, and we mapped the membrane interfaces of the CRD, RBD-CRD, and the KRAS:RBD-CRD complex. RBD-CRD exhibits dynamic interactions with the membrane through the canonical CRD lipid-binding site (CRD ß7-8), as well as an alternative interface comprising ß6 and the C terminus of CRD and ß2 of RBD. Upon complex formation with KRAS, two distinct states were observed by NMR: State A was stabilized by membrane association of CRD ß7-8 and KRAS α4-α5 while state B involved the C terminus of CRD, ß3-5 of RBD, and part of KRAS α5. Notably, α4-α5, which has been proposed to mediate KRAS dimerization, is accessible only in state B. A cancer-associated mutation on the state B membrane interface of CRAF RBD (E125K) stabilized state B and enhanced kinase activity and cellular MAPK signaling. These studies revealed a dynamic picture of the assembly of the KRAS-CRAF complex via multivalent and dynamic interactions between KRAS, CRAF RBD-CRD, and the membrane.


Assuntos
Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Cisteína/química , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
10.
Angew Chem Int Ed Engl ; 62(18): e202218698, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36883374

RESUMO

KRAS is a peripheral membrane protein that regulates multiple signaling pathways, and is mutated in ≈30 % of cancers. Transient self-association of KRAS is essential for activation of the downstream effector RAF and oncogenicity. The presence of anionic phosphatidylserine (PS) lipids in the membrane was shown to promote KRAS self-assembly, however, the structural mechanisms remain elusive. Here, we employed nanodisc bilayers of defined lipid compositions, and probed the impact of PS concentration on KRAS self-association. Paramagnetic NMR experiments demonstrated the existence of two transient dimer conformations involving alternate electrostatic contacts between R135 and either D153 or E168 on the "α4/5-α4/5" interface, and revealed that lipid composition and salt modulate their dynamic equilibrium. These dimer interfaces were validated by charge-reversal mutants. This plasticity demonstrates how the dynamic KRAS dimerization interface responds to the environment, and likely extends to the assembly of other signaling complexes on the membrane.


Assuntos
Bicamadas Lipídicas , Proteínas Proto-Oncogênicas p21(ras) , Bicamadas Lipídicas/química , Eletricidade Estática , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas/metabolismo , Conformação Molecular
11.
Mol Cell ; 53(6): 904-15, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656129

RESUMO

Little is known about how mammalian cells maintain cell size homeostasis. We conducted a novel genetic screen to identify cell-size-controlling genes and isolated Largen, the product of a gene (PRR16) that increased cell size upon overexpression in human cells. In vitro evidence indicated that Largen preferentially stimulates the translation of specific subsets of mRNAs, including those encoding proteins affecting mitochondrial functions. The involvement of Largen in mitochondrial respiration was consistent with the increased mitochondrial mass and greater ATP production in Largen-overexpressing cells. Furthermore, Largen overexpression led to increased cell size in vivo, as revealed by analyses of conditional Largen transgenic mice. Our results establish Largen as an important link between mRNA translation, mitochondrial functions, and the control of mammalian cell size.


Assuntos
Tamanho Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas/genética , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
12.
J Biomol NMR ; 74(10-11): 531-554, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32804298

RESUMO

Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.


Assuntos
Descoberta de Drogas/métodos , Proteínas de Membrana/antagonistas & inibidores , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Mutação , Prenilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Bibliotecas de Moléculas Pequenas/química
13.
Mol Cell ; 47(3): 469-83, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883624

RESUMO

Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypophosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased transepithelial resistance, and lateral domain shortening. Conversely, GAB1 overexpression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multilumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Polaridade Celular/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CACO-2 , Proteínas de Ciclo Celular/genética , Cães , Células HEK293 , Humanos , Rim/citologia , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/genética , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/genética
14.
Mol Cell ; 45(5): 642-55, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22405273

RESUMO

Actin-based stress fiber formation is coupled to microtubule depolymerization through the local activation of RhoA. While the RhoGEF Lfc has been implicated in this cytoskeleton coupling process, it has remained elusive how Lfc is recruited to microtubules and how microtubule recruitment moderates Lfc activity. Here, we demonstrate that the dynein light chain protein Tctex-1 is required for localization of Lfc to microtubules. Lfc residues 139-161 interact with Tctex-1 at a site distinct from the cleft that binds dynein intermediate chain. An NMR-based GEF assay revealed that interaction with Tctex-1 represses Lfc nucleotide exchange activity in an indirect manner that requires both polymerized microtubules and phosphorylation of S885 by PKA. We show that inhibition of Lfc by Tctex-1 is dynein dependent. These studies demonstrate a pivotal role of Tctex-1 as a negative regulator of actin filament organization through its control of Lfc in the crosstalk between microtubule and actin cytoskeletons.


Assuntos
Citoesqueleto de Actina/fisiologia , Dineínas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Microtúbulos/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dineínas/fisiologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/ultraestrutura , Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Camundongos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Fosforilação , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho
15.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326637

RESUMO

Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic 'anchor' residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding motifs that form a Ca2+-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets. Several reported CaM interactors lack these anchors but contain Lys/Arg-rich polybasic sequences adjacent to a lipidated N- or C-terminus. Ca2+-CaM binds the myristoylated N-terminus of CAP23/NAP22 with intimate interactions between the lipid and a surface comprised of the hydrophobic pockets of both lobes, while the basic residues make electrostatic interactions with the negatively charged surface of CaM. Ca2+-CaM binds farnesylcysteine, derived from the farnesylated polybasic C-terminus of KRAS4b, with the lipid inserted into the C-terminal lobe hydrophobic pocket. CaM sequestration of the KRAS4b farnesyl moiety disrupts KRAS4b membrane association and downstream signaling. Phosphorylation of basic regions of N-/C-terminal lipidated CaM targets can reduce affinity for both CaM and the membrane. Since both N-terminal myristoylated and C-terminal prenylated proteins use a Singly Lipidated Polybasic Terminus (SLIPT) for CaM binding, we propose these polybasic lipopeptide elements comprise a non-canonical CaM-binding motif.


Assuntos
Sinalização do Cálcio/genética , Calmodulina/química , Calmodulina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Motivos de Aminoácidos , Cálcio/metabolismo , Calmodulina/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosforilação , Plantas/química , Plantas/genética , Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Conformação Proteica , Isoformas de Proteínas , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Eletricidade Estática
16.
Angew Chem Int Ed Engl ; 59(27): 11037-11045, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32227412

RESUMO

KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, "cross"-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.


Assuntos
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Dimerização , Humanos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química
17.
Plant Cell ; 28(7): 1738-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27335451

RESUMO

Ca(2+) signaling is critical to plant immunity; however, the channels involved are poorly characterized. Cyclic nucleotide-gated channels (CNGCs) are nonspecific, Ca(2+)-permeable cation channels. Plant CNGCs are hypothesized to be negatively regulated by the Ca(2+) sensor calmodulin (CaM), and previous work has focused on a C-terminal CaM-binding domain (CaMBD) overlapping with the cyclic nucleotide binding domain of plant CNGCs. However, we show that the Arabidopsis thaliana isoform CNGC12 possesses multiple CaMBDs at cytosolic N and C termini, which is reminiscent of animal CNGCs and unlike any plant channel studied to date. Biophysical characterizations of these sites suggest that apoCaM interacts with a conserved isoleucine-glutamine (IQ) motif in the C terminus of the channel, while Ca(2+)/CaM binds additional N- and C-terminal motifs with different affinities. Expression of CNGC12 with a nonfunctional N-terminal CaMBD constitutively induced programmed cell death, providing in planta evidence of allosteric CNGC regulation by CaM. Furthermore, we determined that CaM binding to the IQ motif was required for channel function, indicating that CaM can both positively and negatively regulate CNGC12. These data indicate a complex mode of plant CNGC regulation by CaM, in contrast to the previously proposed competitive ligand model, and suggest exciting parallels between plant and animal channels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
Nat Chem Biol ; 18(6): 578-579, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35314815
19.
Nat Chem Biol ; 13(1): 62-68, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27820802

RESUMO

RAS GTPases are important mediators of oncogenesis in humans. However, pharmacological inhibition of RAS has proved challenging. Here we describe a functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition. We developed NS1, a synthetic binding protein (monobody) that bound with high affinity to both GTP- and GDP-bound states of H-RAS and K-RAS but not N-RAS. NS1 potently inhibited growth factor signaling and oncogenic H-RAS- and K-RAS-mediated signaling and transformation but did not block oncogenic N-RAS, BRAF or MEK1. NS1 bound the α4-ß6-α5 region of RAS, which disrupted RAS dimerization and nanoclustering and led to blocking of CRAF-BRAF heterodimerization and activation. These results establish the importance of the α4-ß6-α5 interface in RAS-mediated signaling and define a previously unrecognized site in RAS for inhibiting RAS function.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Proteínas ras/antagonistas & inibidores , Proteínas ras/química , Animais , Anticorpos Monoclonais/química , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Proteínas ras/metabolismo
20.
J Am Chem Soc ; 140(13): 4473-4476, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29543440

RESUMO

Small GTPases (sGTPases) are critical switch-like regulators that mediate several important cellular functions and are often mutated in human cancers. They are activated by guanine nucleotide exchange factors (GEFs), which specifically catalyze the exchange of GTP for GDP. GEFs coordinate signaling networks in normal cells, and are frequently deregulated in cancers. sGTPase signaling pathways are complex and interconnected; however, most GEF assays do not reveal such complexity. In this Communication, we describe the development of a unique real-time NMR-based multiplexed GEF assay that employs distinct isotopic labeling schemes for each sGTPase protein to enable simultaneous observation of six proteins of interest. We monitor nucleotide exchange of KRas, Rheb, RalB, RhoA, Cdc42 and Rac1 in a single system, and assayed the activities of GEFs in lysates of cultured human cells and 3D organoids derived from pancreatic cancer patients. We observed potent activation of RhoA by lysates of HEK293a cells transfected with GEF-H1, along with weak stimulation of Rac1, which we showed is indirect. Our functional analyses of pancreatic cancer-derived organoids revealed higher GEF activity for RhoA than other sGTPases, in line with RNA-seq data indicating high expression of RhoA-specific GEFs.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Bioensaio , Fatores de Troca do Nucleotídeo Guanina/classificação , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/patologia , Proteína rhoA de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA