Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 17(9): 794-799, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013056

RESUMO

Topological semimetals host electronic structures with several band-contact points or lines and are generally expected to exhibit strong topological responses. Up to now, most work has been limited to non-magnetic materials and the interplay between topology and magnetism in this class of quantum materials has been largely unexplored. Here we utilize theoretical calculations, magnetotransport and angle-resolved photoemission spectroscopy to propose Fe3GeTe2, a van der Waals material, as a candidate ferromagnetic (FM) nodal line semimetal. We find that the spin degree of freedom is fully quenched by the large FM polarization, but the line degeneracy is protected by crystalline symmetries that connect two orbitals in adjacent layers. This orbital-driven nodal line is tunable by spin orientation due to spin-orbit coupling and produces a large Berry curvature, which leads to a large anomalous Hall current, angle and factor. These results demonstrate that FM topological semimetals hold significant potential for spin- and orbital-dependent electronic functionalities.

2.
Sci Rep ; 9(1): 20253, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882982

RESUMO

Crystal structure prediction and in silico physical property observations guide experimental synthesis in high-pressure research. Here, we used magnesium carbides as a representative example of computational high-pressure studies. We predicted various compositions of Mg-C compounds up to 150 GPa and successfully reproduced previous experimental results. Interestingly, our proposed MgC2 at high pressure >7 GPa consists of extended carbon bonds, one-dimensional graphene layers, and Mg atomic layers, which provides a good platform to study superconductivity of metal intercalated graphene nano-ribbons. We found that this new phase of MgC2 could be recovered to ambient pressure and exhibited a strong electron-phonon coupling (EPC) strength of 0.6 whose corresponding superconductivity transition temperature reached 15 K. The EPC originated from the cooperation of the out-of-plane and the in-plane phonon modes. The geometry confinement and the hybridization between the Mg s and C pz orbitals significantly affect the coupling of phonon modes and electrons. These results show the importance of the high-pressure route to the synthesis of novel functional materials, which can promote the search for new phases of carbon-based superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA