Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 19(3): e3001161, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788834

RESUMO

Scientists routinely use images to display data. Readers often examine figures first; therefore, it is important that figures are accessible to a broad audience. Many resources discuss fraudulent image manipulation and technical specifications for image acquisition; however, data on the legibility and interpretability of images are scarce. We systematically examined these factors in non-blot images published in the top 15 journals in 3 fields; plant sciences, cell biology, and physiology (n = 580 papers). Common problems included missing scale bars, misplaced or poorly marked insets, images or labels that were not accessible to colorblind readers, and insufficient explanations of colors, labels, annotations, or the species and tissue or object depicted in the image. Papers that met all good practice criteria examined for all image-based figures were uncommon (physiology 16%, cell biology 12%, plant sciences 2%). We present detailed descriptions and visual examples to help scientists avoid common pitfalls when publishing images. Our recommendations address image magnification, scale information, insets, annotation, and color and may encourage discussion about quality standards for bioimage publishing.


Assuntos
Obras Pictóricas como Assunto/tendências , Redação/normas , Pesquisa Biomédica , Comunicação , Humanos , Publicações Periódicas como Assunto , Publicações/normas , Editoração/tendências , Comunicação Acadêmica
3.
BMC Neurosci ; 17(1): 72, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829368

RESUMO

BACKGROUND: The AP-2 transcription factor APTF-1 is crucially required for developmentally controlled sleep behavior in Caenorhabditis elegans larvae. Its human ortholog, TFAP-2beta, causes Char disease and has also been linked to sleep disorders. These data suggest that AP-2 transcription factors may be highly conserved regulators of various types of sleep behavior. Here, we tested the idea that AP-2 controls adult sleep in Drosophila. RESULTS: Drosophila has one AP-2 ortholog called TfAP-2, which is essential for viability. To investigate its potential role in sleep behavior and neural development, we specifically downregulated TfAP-2 in the nervous system. We found that neuronal TfAP-2 knockdown almost completely abolished night sleep but did not affect day sleep. TfAP-2 insufficiency affected nervous system development. Conditional TfAP-2 knockdown in the adult also produced a modest sleep phenotype, suggesting that TfAP-2 acts both in larval as well as in differentiated neurons. CONCLUSIONS: Thus, our results show that AP-2 transcription factors are highly conserved regulators of development and sleep.


Assuntos
Proteínas de Drosophila/metabolismo , Sono/fisiologia , Fator de Transcrição AP-2/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Neurônios/patologia , Fotoperíodo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição AP-2/genética , Gravação em Vídeo
4.
Elife ; 92020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216872

RESUMO

The need to protect public health during the current COVID-19 pandemic has necessitated conference cancellations on an unprecedented scale. As the scientific community adapts to new working conditions, it is important to recognize that some of our actions may disproportionately affect early-career researchers and scientists from countries with limited research funding. We encourage all conference organizers, funders and institutions who are able to do so to consider how they can mitigate the unintended consequences of conference and travel cancellations and we provide seven recommendations for how this could be achieved. The proposed solutions may also offer long-term benefits for those who normally cannot attend conferences, and thus lead to a more equitable future for generations of researchers.


Assuntos
Congressos como Assunto/tendências , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Pesquisadores , Viagem , Betacoronavirus , COVID-19 , Mobilidade Ocupacional , Congressos como Assunto/economia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Políticas Editoriais , Humanos , Internet , Relações Interprofissionais , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Saúde Pública , Editoração , Apoio à Pesquisa como Assunto , SARS-CoV-2
5.
Elife ; 92020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633721

RESUMO

The eLife Early-Career Advisory Group (ECAG), an international group of early-career researchers committed to improving research culture, calls for radical changes at eLife and other journals to address racism in the scientific community and to make science more diverse and inclusive.


Assuntos
Diversidade Cultural , Equidade de Gênero , Editoração/normas , Racismo/prevenção & controle , Pesquisadores/estatística & dados numéricos , Inclusão Social , Revisão por Pares
6.
Chronobiol Int ; 28(2): 163-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21231878

RESUMO

We assessed the effect of different day/night lengths on the pre-adult developmental time of two species of Camponotus ants that normally develop in dark underground nests. We assayed larval (egg-to-pupal formation), pupal (pupal formation-to-adult emergence), and pre-adult (egg-to-adult emergence) durations in these ants under three different light/dark (LD) cycles of 12:12 h, 10:14 h, and 14:10 h. We observed that the pre-adult development time of ants under these day lengths was significantly different. Although both species developed fastest under 12:12 h LD, when asymmetric LD cycles were compared, night-active species (Camponotus compressus) developed faster under short days (10:14 h) and day-active species (C. paria) developed faster under long days (14:10 h). This day/night-length-mediated difference in pre-adult developmental duration was mostly due to modulation of larval duration; however, in day-active species it was also via altered pupal duration. These results thus indicate that the two species of Camponotus ants respond differently to short and long days, suggesting that seasonal timers regulate pre-adult development time in tropical ant species living in dark underground nests.


Assuntos
Formigas/fisiologia , Ritmo Circadiano/fisiologia , Larva/crescimento & desenvolvimento , Fotoperíodo , Pupa/crescimento & desenvolvimento , Animais , Relógios Biológicos/fisiologia , Metamorfose Biológica/fisiologia , Estações do Ano
7.
J Insect Physiol ; 56(11): 1611-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20570678

RESUMO

Circadian clocks provide adaptive advantage to their owners by timing their behavioural and physiological processes in accordance with the external environment. Here we report the results of our study aimed at investigating the effect of the interaction between circadian timing system and environmental light/dark (LD) cycles on pre-adult development time of two sympatric species of Componotus ants, the night active Componotus compressus, and the day active C. paria-both species develop in dark underground nests, under fairly constant conditions of humidity and temperature. We estimated pre-adult developmental durations in these ants under three different LD cycles (T20=10 h of light and 10 h of darkness, T24=12 h of light and 12 h of darkness, and T28=14 h of light and 14 h of darkness). We find that both species exhibit significantly faster pre-adult development under T24 compared to T20 and T28. Given that faster development in insects is considered as an adaptive strategy these results can be taken to suggest that Camponotus ants accrue greater fitness advantage under T24 compared to T20 and T28 LD cycles, possibly due to "circadian resonance" between circadian timing system and environmental LD cycle. Thus our study reveals that boreal species of ants could serve as a case for the study of adaptive significance of circadian organization.


Assuntos
Formigas/crescimento & desenvolvimento , Formigas/genética , Ritmo Circadiano/fisiologia , Metamorfose Biológica/fisiologia , Animais , Larva , Luz , Fotoperíodo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA