Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(1): e3001932, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603053

RESUMO

Use of rigorous study design methods and transparent reporting in publications are 2 key strategies proposed to improve the reproducibility of preclinical research. Despite promotion of these practices by funders and journals, assessments suggest uptake is low in preclinical research. Thirty preclinical scientists were interviewed to better understand barriers and enablers to rigorous design and reporting. The interview guide was informed by the Theoretical Domains Framework, which is a framework used to understand determinants of current and desired behavior. Four global themes were identified; 2 reflecting enablers and 2 reflecting barriers. We found that basic scientists are highly motivated to apply the methods of rigorous design and reporting and perceive a number of benefits to their adoption (e.g., improved quality and reliability). However, there was varied awareness of the guidelines and in implementation of these practices. Researchers also noted that these guidelines can result in disadvantages, such as increased sample sizes, expenses, time, and can require several personnel to operationalize. Most researchers expressed additional resources such as personnel and education/training would better enable the application of some methods. Using existing guidance (Behaviour Change Wheel (BCW); Expert Recommendations for Implementing Change (ERIC) project implementation strategies), we mapped and coded our interview findings to identify potential interventions, policies, and implementation strategies to improve routine use of the guidelines by preclinical scientists. These findings will help inform specific strategies that may guide the development of programs and resources to improve experimental design and transparent reporting in preclinical research.


Assuntos
Projetos de Pesquisa , Reprodutibilidade dos Testes , Pesquisa Qualitativa
2.
J Biol Chem ; 299(6): 104749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100284

RESUMO

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Assuntos
Antivirais , COVID-19 , Mpox , Vacínia , Animais , Camundongos , Antivirais/farmacologia , Mpox/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Vacínia/tratamento farmacológico , Vaccinia virus/efeitos dos fármacos
3.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37735876

RESUMO

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Assuntos
Vetores Genéticos , Neoplasias , Interferência de RNA , Vetores Genéticos/genética , Terapia Genética , Técnicas de Transferência de Genes , Neoplasias/genética , Neoplasias/terapia
4.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526097

RESUMO

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Imidazóis , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Antivirais/farmacologia , Imidazóis/farmacologia , Camundongos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Estados Unidos , United States Food and Drug Administration
5.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687845

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Assuntos
COVID-19 , Vacinas , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Linfócitos T
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674550

RESUMO

Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.


Assuntos
Vesículas Extracelulares , Viroses , Vírus , Humanos , Vesículas Extracelulares/metabolismo , Viroses/metabolismo , Antivirais/metabolismo
7.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33578036

RESUMO

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/farmacologia , Bioensaio , Lectinas/farmacologia , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Asparagina/química , Asparagina/metabolismo , Sítios de Ligação , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Genes Reporter , Glicosilação/efeitos dos fármacos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
8.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668756

RESUMO

Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays. Specifically, we examine the mutational effects on RBD-ACE2 binding ability, efficacy of competitive inhibitors, as well as neutralizing antibody activity. We also look at the implications the mutations may have on virus transmissibility, host susceptibility, and the virus transmission path to humans. These critical determinants of virus-host interactions may provide more effective targets for ongoing vaccines, drug development, and potentially pave the way for determining the genetic variation underlying disease severity.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes/imunologia , Antivirais/farmacologia , Sítios de Ligação , COVID-19/imunologia , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , Alinhamento de Sequência , Tratamento Farmacológico da COVID-19
9.
PLoS Pathog ; 10(1): e1003836, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453963

RESUMO

Tumour mutations corrupt cellular pathways, and accumulate to disrupt, dysregulate, and ultimately avoid mechanisms of cellular control. Yet the very changes that tumour cells undergo to secure their own growth success also render them susceptible to viral infection. Enhanced availability of surface receptors, disruption of antiviral sensing, elevated metabolic activity, disengagement of cell cycle controls, hyperactivation of mitogenic pathways, and apoptotic avoidance all render the malignant cell environment highly supportive to viral replication. The therapeutic use of oncolytic viruses (OVs) with a natural tropism for infecting and subsequently lysing tumour cells is a rapidly progressing area of cancer research. While many OVs exhibit an inherent degree of tropism for transformed cells, this can be further promoted through pharmacological interventions and/or the introduction of viral mutations that generate recombinant oncolytic viruses adapted to successfully replicate only in a malignant cellular environment. Such adaptations that augment OV tumour selectivity are already improving the therapeutic outlook for cancer, and there remains tremendous untapped potential for further innovation.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/metabolismo , Animais , Humanos , Vírus Oncolíticos/genética
10.
Mol Ther ; 23(6): 1066-1076, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25807289

RESUMO

Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts.


Assuntos
Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Vaccinia virus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Estudos de Viabilidade , Feminino , Células HeLa , Humanos , Injeções Intralesionais , Macaca fascicularis/imunologia , Masculino , Neoplasias/sangue , Neoplasias/terapia , Testes de Neutralização , Piridonas/imunologia , Piridonas/farmacologia , Ratos , Ratos Endogâmicos F344 , Vacina Antivariólica/sangue , Vacina Antivariólica/imunologia , Vacinação , Células Vero
11.
Cell Microbiol ; 16(8): 1201-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24456140

RESUMO

Rubella virus (RV), a member of Togaviridae, is an important human pathogen that can cause severe defects in the developing fetus. Compared to other togaviruses, RV replicates very slowly suggesting that it must employ effective mechanisms to delay the innate immune response. A recent study by our laboratory revealed that the capsid protein of RV is a potent inhibitor of apoptosis. A primary mechanism by which RV capsid interferes with programmed cell death appears to be through interaction with the pro-apoptotic Bcl-2 family member Bax. In the present study, we report that the capsid protein also blocks IRF3-dependent apoptosis induced by the double-strand RNA mimic polyinosinic-polycytidylic acid. In addition, analyses of cis-acting elements revealed that phosphorylation and membrane association are important for its anti-apoptotic function. Finally, the observation that hypo-phosphorylated capsid binds Bax just as well as wild-type capsid protein suggests that interaction with this pro-apoptotic host protein in and of itself is not sufficient to block programmed cell death. This provides additional evidence that this viral protein inhibits apoptosis through multiple mechanisms.


Assuntos
Apoptose/imunologia , Proteínas do Capsídeo/metabolismo , Mitocôndrias/efeitos dos fármacos , Vírus da Rubéola/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Citocromos c/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Fosforilação , Poli I-C/farmacologia , Proteínas Recombinantes/farmacologia , Células Vero
12.
Mol Ther ; 22(7): 1320-1332, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24695102

RESUMO

This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy. We further explored the efficacy of attenuated MG1 (nonreplicating MG1-UV(2min) and single-cycle replicating MG1-Gless) and demonstrated that these viruses activate conventional dendritic cells, although to a lesser extent than live MG1. This translates to equivalent abilities to remove tumor metastases only at the highest viral doses of attenuated MG1. In tandem, we characterized the antitumor ability of NK cells following preoperative administration of live and attenuated MG1. Our results demonstrates that a similar level of NK activation and reduction in postoperative tumor metastases was achieved with equivalent high viral doses concluding that viral replication is important, but not necessary for NK activation. Biochemical characterization of a panel of UV-inactivated MG1 (2-120 minutes) revealed that intact viral particle and target cell recognition are essential for NK cell-mediated antitumor responses. These findings provide mechanistic insight and preclinical rationale for safe perioperative virotherapy to effectively reduce metastatic disease following cancer surgery.


Assuntos
Células Dendríticas/citologia , Células Matadoras Naturais/citologia , Melanoma/terapia , Rhabdoviridae/fisiologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Terapia Viral Oncolítica/métodos
13.
Cancers (Basel) ; 16(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39123450

RESUMO

Pancreatic cancer has one of the worst prognoses among all malignancies and few available treatment options. Patient-derived xenografts can be used to develop personalized therapy for pancreatic cancer. Endoscopic ultrasound fine-needle aspiration (EUS-FNA) may provide a powerful alternative to surgery for obtaining sufficient tissue for the establishment of patient-derived xenografts. In this study, EUS-FNA samples were obtained for 30 patients referred to the Ottawa Hospital, Ottawa, Ontario, Canada. These samples were used for xenotransplantation in NOD-SCID mice and for genetic analyses. The gene expression of pancreatic-cancer-relevant genes in xenograft tumors was examined by immunohistochemistry. Targeted sequencing of both the patient-derived tumors and xenograft tumors was performed. The xenografts' susceptibility to oncolytic virus infection was studied by infecting xenograft-derived cells with VSV∆51-GFP. The xenograft take rate was found to be 75.9% for passage 1 and 100% for passage 2. Eighty percent of patient tumor samples were successfully sequenced to a high depth for 42 cancer genes. Xenograft histological characteristics and marker expression were maintained between passages. All tested xenograft samples were susceptible to oncoviral infection. We found that EUS-FNA is an accessible, minimally invasive technique that can be used to acquire adequate pancreatic cancer tissue for the generation of patient-derived xenografts and for genetic sequencing.

14.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869480

RESUMO

While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.


Assuntos
Antígeno B7-H1 , Interferon Tipo I , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Glicólise , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Ácido Láctico/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Transdução de Sinais , Masculino
15.
Nat Commun ; 15(1): 7267, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179564

RESUMO

Targeted antineoplastic immunotherapies have achieved remarkable clinical outcomes. However, resistance to these therapies due to target absence or antigen shedding limits their efficacy and excludes tumours from candidacy. To address this limitation, here we engineer an oncolytic rhabdovirus, vesicular stomatitis virus (VSVΔ51), to express a truncated targeted antigen, which allows for HER2-targeting with trastuzumab. The truncated HER2 (HER2T) lacks signaling capabilities and is efficiently expressed on infected cell surfaces. VSVΔ51-mediated HER2T expression simulates HER2-positive status in tumours, enabling effective treatment with the antibody-drug conjugate trastuzumab emtansine in vitro, ex vivo, and in vivo. Additionally, we combine VSVΔ51-HER2T with an oncolytic vaccinia virus expressing a HER2-targeted T-cell engager. This dual-virus therapeutic strategy demonstrates potent curative efficacy in vivo in female mice using CD3+ infiltrate for anti-tumour immunity. Our findings showcase the ability to tailor the tumour microenvironment using oncolytic viruses, thereby enhancing compatibility with "off-the-shelf" targeted therapies.


Assuntos
Imunoterapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Receptor ErbB-2 , Linfócitos T , Trastuzumab , Vaccinia virus , Animais , Feminino , Humanos , Imunoterapia/métodos , Camundongos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Receptor ErbB-2/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Linhagem Celular Tumoral , Vaccinia virus/genética , Vaccinia virus/imunologia , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Microambiente Tumoral/imunologia , Vesiculovirus/genética , Vesiculovirus/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
16.
PLoS Pathog ; 7(2): e1001291, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379337

RESUMO

Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas do Capsídeo/metabolismo , Mitocôndrias/metabolismo , Vírus da Rubéola/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/genética , Western Blotting , Proteínas do Capsídeo/genética , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Rim/citologia , Rim/virologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rubéola (Sarampo Alemão)/genética , Rubéola (Sarampo Alemão)/metabolismo , Rubéola (Sarampo Alemão)/virologia , Vírus da Rubéola/genética , Montagem de Vírus , Replicação Viral , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
17.
Mol Ther ; 20(4): 749-58, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22186794

RESUMO

Oncolytic viruses are generally designed to be cancer selective on the basis of a single genetic mutation. JX-594 is a thymidine kinase (TK) gene-inactivated oncolytic vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and lac-Z transgenes that is designed to destroy cancer cells through replication-dependent cell lysis and stimulation of antitumoral immunity. JX-594 has demonstrated a favorable safety profile and reproducible tumor necrosis in a variety of solid cancer types in clinical trials. However, the mechanism(s) responsible for its cancer-selectivity have not yet been well described. We analyzed the replication of JX-594 in three model systems: primary normal and cancer cells, surgical explants, and murine tumor models. JX-594 replication, transgene expression, and cytopathic effects were highly cancer-selective, and broad spectrum activity was demonstrated. JX-594 cancer-selectivity was multi-mechanistic; replication was activated by epidermal growth factor receptor (EGFR)/Ras pathway signaling, cellular TK levels, and cancer cell resistance to type-I interferons (IFNs). These findings confirm a large therapeutic index for JX-594 that is driven by common genetic abnormalities in human solid tumors. This appears to be the first description of multiple selectivity mechanisms, both inherent and engineered, for an oncolytic virus. These findings have implications for oncolytic viruses in general, and suggest that their cancer targeting is a complex and multifactorial process.


Assuntos
Neoplasias/metabolismo , Vírus Oncolíticos/fisiologia , Poxviridae/fisiologia , Transdução de Sinais/fisiologia , Replicação Viral/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Leucócitos Mononucleares , Camundongos , Camundongos Nus , Neoplasias/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Poxviridae/genética , Transdução de Sinais/genética , Replicação Viral/genética
18.
Methods Mol Biol ; 2614: 139-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587124

RESUMO

Oncolytic viruses (OVs) rapidly and specifically replicate in and kill tumor cells. OV-targeted infection of malignant cells has the potential to create an "inflammatory storm" that stimulates both innate and adaptive anti-tumor immune responses. The generation of anti-tumor immunity following OV treatment has been shown to be crucial for effective therapy. Therefore, establishing methodologies to measure the generation of anti-tumor T cell responses following OV infection in in vitro assays, which better mimic the complexity of the human tumor microenvironment (TME), will be critical to harness the full potential of OV therapy. Such experimental platforms will accelerate the development of next-generation OVs that are capable of overcoming immunosuppressive networks found within the tumor microenvironment. Here we describe a method that was designed to test the generation and quantification of human tumor-specific T cells following OV infection of 3D tumor spheroids cultured with or without fibroblasts.


Assuntos
Antineoplásicos , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Viroses , Humanos , Terapia Viral Oncolítica/métodos , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral , Viroses/terapia
19.
Front Immunol ; 14: 1181014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153626

RESUMO

Background: Established mouse models of HER2+ cancer are based on the over-expression of rodent Neu/Erbb2 homologues, which are incompatible with human HER2 (huHER2) targeted therapeutics. Additionally, the use of immune-deficient xenograft or transgenic models precludes assessment of native anti-tumour immune responses. These hurdles have been a challenge for our understanding of the immune mechanisms behind huHER2-targeting immunotherapies. Methods: To assess the immune impacts of our huHER2-targeted combination strategy, we generated a syngeneic mouse model of huHER2+ breast cancer, using a truncated form of huHER2, HER2T. Following validation of this model, we next treated tumour-bearing with our immunotherapy strategy: oncolytic vesicular stomatitis virus (VSVΔ51) with clinically approved antibody-drug conjugate targeting huHER2, trastuzumab emtansine (T-DM1). We assessed efficacy through tumour control, survival, and immune analyses. Results: The generated truncated HER2T construct was non-immunogenic in wildtype BALB/c mice upon expression in murine mammary carcinoma 4T1.2 cells. Treatment of 4T1.2-HER2T tumours with VSVΔ51+T-DM1 yielded robust curative efficacy compared to controls, and broad immunologic memory. Interrogation of anti-tumour immunity revealed tumour infiltration by CD4+ T cells, and activation of B, NK, and dendritic cell responses, as well as tumour-reactive serum IgG. Conclusions: The 4T1.2-HER2T model was used to evaluate the anti-tumour immune responses following our complex pharmacoviral treatment strategy. These data demonstrate utility of the syngeneic HER2T model for assessment of huHER2-targeted therapies in an immune-competent in vivo setting. We further demonstrated that HER2T can be implemented in multiple other syngeneic tumour models, including but not limited to colorectal and ovarian models. These data also suggest that the HER2T platform may be used to assess a range of surface-HER2T targeting approaches, such as CAR-T, T-cell engagers, antibodies, or even retargeted oncolytic viruses.


Assuntos
Neoplasias da Mama , Rhabdoviridae , Humanos , Camundongos , Animais , Feminino , Ado-Trastuzumab Emtansina/uso terapêutico , Neoplasias da Mama/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Modelos Animais de Doenças
20.
Mol Ther Methods Clin Dev ; 31: 101110, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37822719

RESUMO

SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA