Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Comput Biol ; 20(7): e1011198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959284

RESUMO

Interpreting transcriptome data is an important yet challenging aspect of bioinformatic analysis. While gene set enrichment analysis is a standard tool for interpreting regulatory changes, we utilize deep learning techniques, specifically autoencoder architectures, to learn latent variables that drive transcriptome signals. We investigate whether simple, variational autoencoder (VAE), and beta-weighted VAE are capable of learning reduced representations of transcriptomes that retain critical biological information. We propose a novel VAE that utilizes priors from biological data to direct the network to learn a representation of the transcriptome that is based on understandable biological concepts. After benchmarking five different autoencoder architectures, we found that each succeeded in reducing the transcriptomes to 50 latent dimensions, which captured enough variation for accurate reconstruction. The simple, fully connected autoencoder, performs best across the benchmarks, but lacks the characteristic of having directly interpretable latent dimensions. The beta-weighted, prior-informed VAE implementation is able to solve the benchmarking tasks, and provide semantically accurate latent features equating to biological pathways. This study opens a new direction for differential pathway analysis in transcriptomics with increased transparency and interpretability.


Assuntos
Biologia Computacional , Aprendizado Profundo , Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Algoritmos
2.
Lung ; 202(2): 157-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494528

RESUMO

PURPOSE: To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS: Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS: Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION: This simple model could be useful to characterize patient serum and epithelial cell properties.


Assuntos
Inflamação , Transcriptoma , Humanos , Inflamação/genética , Inflamação/metabolismo , Células Epiteliais/metabolismo , Biomarcadores/metabolismo
3.
Gesundheitswesen ; 2024 Aug 22.
Artigo em Alemão | MEDLINE | ID: mdl-39173676

RESUMO

In the early phase of the COVID-19 pandemic, many local collections of clinical data on patients infected with SARS-CoV-2 were initiated in Germany. As part of the National Pandemic Cohort Network (NAPKON) of the University Medicine Network, the "Integration Core" was established to design the legal, technical and organisational requirements for the integration of inventory data into ongoing prospective data collections and to test the feasibility of the newly developed solutions using use cases (UCs). Detailed study documents of the data collections were obtained. After structured document analysis, a review board evaluated the integrability of the data in NAPKON according to defined criteria. Of 30 university hospitals contacted, 20 responded to the request. Patient information and consent showed a heterogeneous picture with regard to the pseudonymised transfer of data to third parties and re-contact. The majority of the data collections (n=13) met the criteria for integration into NAPKON; four studies would require adjustments to the regulatory documents. Three cohorts were not suitable for inclusion in NAPKON. The legal framework for retrospective data integration and consent-free data use via research clauses (§27 BDSG) was elaborated by a legal opinion by TMF - Technology, Methods and Infrastructure for Networked Medical Research, Berlin. Two UCs selected by the NAPKON steering committee (CORKUM, LMU Munich; Pa-COVID-19, Charité- Universitätsmedizin Berlin) were used to demonstrate the feasibility of data integration in NAPKON by the end of 2021. Quality assurance and performance-based reimbursement of the cases were carried out according to the specifications. Based on the results, recommendations can be formulated for various contexts in order to create technical-operational prerequisites such as interoperability, interfaces and data models for data integration and to fulfil regulatory requirements on ethics, data protection, medical confidentiality and data access when integrating existing cohort data. The possible integration of data into research networks and their secondary use should be taken into account as early as the planning phase of a study - particularly with regard to informed consent - in order to maximise the benefits of the data collected.

4.
Front Oncol ; 14: 1286896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450189

RESUMO

Background: Cachexia is a body wasting syndrome that significantly affects well-being and prognosis of cancer patients, without effective treatment. Serum metabolites take part in pathophysiological processes of cancer cachexia, but apart from altered levels of select serum metabolites, little is known on the global changes of the overall serum metabolome, which represents a functional readout of the whole-body metabolic state. Here, we aimed to comprehensively characterize serum metabolite alterations and analyze associated pathways in cachectic cancer patients to gain new insights that could help instruct strategies for novel interventions of greater clinical benefit. Methods: Serum was sampled from 120 metastatic cancer patients (stage UICC IV). Patients were grouped as cachectic or non-cachectic according to the criteria for cancer cachexia agreed upon international consensus (main criterium: weight loss adjusted to body mass index). Samples were pooled by cachexia phenotype and assayed using non-targeted gas chromatography-mass spectrometry (GC-MS). Normalized metabolite levels were compared using t-test (p < 0.05, adjusted for false discovery rate) and partial least squares discriminant analysis (PLS-DA). Machine-learning models were applied to identify metabolite signatures for separating cachexia states. Significant metabolites underwent MetaboAnalyst 5.0 pathway analysis. Results: Comparative analyses included 78 cachectic and 42 non-cachectic patients. Cachectic patients exhibited 19 annotable, significantly elevated (including glucose and fructose) or decreased (mostly amino acids) metabolites associating with aminoacyl-tRNA, glutathione and amino acid metabolism pathways. PLS-DA showed distinct clusters (accuracy: 85.6%), and machine-learning models identified metabolic signatures for separating cachectic states (accuracy: 83.2%; area under ROC: 88.0%). We newly identified altered blood levels of erythronic acid and glucuronic acid in human cancer cachexia, potentially linked to pentose-phosphate and detoxification pathways. Conclusion: We found both known and yet unknown serum metabolite and metabolic pathway alterations in cachectic cancer patients that collectively support a whole-body metabolic state with impaired detoxification capability, altered glucose and fructose metabolism, and substrate supply for increased and/or distinct metabolic needs of cachexia-associated tumors. These findings together imply vulnerabilities, dependencies and targets for novel interventions that have potential to make a significant impact on future research in an important field of cancer patient care.

5.
Genes (Basel) ; 15(1)2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38254956

RESUMO

Population-based biobanking is an essential element of medical research that has grown substantially over the last two decades, and many countries are currently pursuing large national biobanking initiatives. The rise of individual biobanks is paralleled by various networking activities in the field at both the national and international level, such as BBMRI-ERIC in the EU. A significant contribution to population-based biobanking comes from large cohort studies and national repositories, including the United Kingdom Biobank (UKBB), the CONSTANCES project in France, the German National Cohort (NAKO), LifeLines in the Netherlands, FinnGen in Finland, and the All of Us project in the U.S. At the same time, hospital-based biobanking has also gained importance in medical research. We describe some of the scientific questions that can be addressed particularly well by the use of population-based biobanks, including the discovery and calibration of biomarkers and the identification of molecular correlates of health parameters and disease states. Despite the tremendous progress made so far, some major challenges to population-based biobanking still remain, including the need to develop strategies for the long-term sustainability of biobanks, the handling of incidental findings, and the linkage of sample-related and sample-derived data to other relevant resources.


Assuntos
Pesquisa Biomédica , Saúde da População , Humanos , Bancos de Espécimes Biológicos , Calibragem , Finlândia
6.
Sci Rep ; 14(1): 15739, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977837

RESUMO

Mortality of patients hospitalized with COVID-19 has remained high during the consecutive SARS-CoV-2 pandemic waves. Early discrimination of patients at high mortality risk is crucial for optimal patient care. Symmetric (SDMA) and asymmetric dimethylarginine (ADMA) have been proposed as possible biomarkers to improve risk prediction of COVID-19 patients. We measured SDMA, ADMA, and other L-arginine-related metabolites in 180 patients admitted with COVID-19 in four German university hospitals as compared to 127 healthy controls. Patients were treated according to accepted clinical guidelines and followed-up until death or hospital discharge. Classical inflammatory markers (leukocytes, CRP, PCT), renal function (eGFR), and clinical scores (SOFA) were taken from hospital records. In a small subgroup of 23 COVID-19 patients, sequential blood samples were available and analyzed for biomarker trends over time until 14 days after admission. Patients had significantly elevated SDMA, ADMA, and L-ornithine and lower L-citrulline concentrations than controls. Within COVID-19 patients, SDMA and ADMA were significantly higher in non-survivors (n = 41, 22.8%) than in survivors. In ROC analysis, the optimal cut-off to discriminate non-survivors from survivors was 0.579 µmol/L for SDMA and 0.599 µmol/L for ADMA (both p < 0.001). High SDMA and ADMA were associated with odds ratios for death of 11.45 (3.37-38.87) and 5.95 (2.63-13.45), respectively. Analysis of SDMA and ADMA allowed discrimination of a high-risk (mortality, 43.7%), medium-risk (15.1%), and low-risk group (3.6%); risk prediction was significantly improved over classical laboratory markers. We conclude that analysis of ADMA and SDMA after hospital admission significantly improves risk prediction in COVID-19.


Assuntos
Arginina , Biomarcadores , COVID-19 , Hospitalização , Humanos , Arginina/análogos & derivados , Arginina/sangue , COVID-19/mortalidade , COVID-19/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , SARS-CoV-2/isolamento & purificação , Alemanha/epidemiologia , Prognóstico , Adulto , Idoso de 80 Anos ou mais , Fatores de Risco
7.
Geroscience ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141284

RESUMO

The number of older adults worldwide is growing exponentially. However, while living longer, older individuals are more susceptible to both non-infectious and infectious diseases, at least in part due to alterations of the immune system. Here, we report on a prospective cohort study investigating the influence of age on immune responses and susceptibility to infection. The RESIST Senior Individuals (SI) cohort was established as a general population cohort with a focus on the elderly, enrolling an age- and sex-stratified sample of 650 individuals (n = 100 20-39y, n = 550 61-94y, 2019-2023, Hannover, Germany). It includes clinical, demographic, and lifestyle data and also extensive biomaterial sampling. Initial insights indicate that the SI cohort exhibits characteristics of the aging immune system and the associated susceptibility to infection, thereby providing a suitable platform for the decoding of age-related alterations of the immune system and unraveling the molecular mechanisms underlying the impaired immune responsiveness in aging populations by exploring comprehensive, unbiased multi-omics datasets.

8.
EBioMedicine ; 104: 105171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810562

RESUMO

BACKGROUND: The increasing volume and intricacy of sequencing data, along with other clinical and diagnostic data, like drug responses and measurable residual disease, creates challenges for efficient clinical comprehension and interpretation. Using paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) as a use case, we present an artificial intelligence (AI)-assisted clinical framework clinALL that integrates genomic and clinical data into a user-friendly interface to support routine diagnostics and reveal translational insights for hematologic neoplasia. METHODS: We performed targeted RNA sequencing in 1365 cases with haematological neoplasms, primarily paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) from the AIEOP-BFM ALL study. We carried out fluorescence in situ hybridization (FISH), karyotyping and arrayCGH as part of the routine diagnostics. The analysis results of these assays as well as additional clinical information were integrated into an interactive web interface using Bokeh, where the main graph is based on Uniform Manifold Approximation and Projection (UMAP) analysis of the gene expression data. At the backend of the clinALL, we built both shallow machine learning models and a deep neural network using Scikit-learn and PyTorch respectively. FINDINGS: By applying clinALL, 78% of undetermined patients under the current diagnostic protocol were stratified, and ambiguous cases were investigated. Translational insights were discovered, including IKZF1plus status dependent subpopulations of BCR::ABL1 positive patients, and a subpopulation within ETV6::RUNX1 positive patients that has a high relapse frequency. Our best machine learning models, LDA and PASNET-like neural network models, achieve F1 scores above 97% in predicting patients' subgroups. INTERPRETATION: An AI-assisted clinical framework that integrates both genomic and clinical data can take full advantage of the available data, improve point-of-care decision-making and reveal clinically relevant insights promptly. Such a lightweight and easily transferable framework works for both whole transcriptome data as well as the cost-effective targeted RNA-seq, enabling efficient and equitable delivery of personalized medicine in small clinics in developing countries. FUNDING: German Ministry of Education and Research (BMBF), German Research Foundation (DFG) and Foundation for Polish Science.


Assuntos
Inteligência Artificial , Pesquisa Translacional Biomédica , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Biologia Computacional/métodos , Criança , Hibridização in Situ Fluorescente/métodos , Feminino , Masculino , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos
9.
Trials ; 25(1): 247, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594753

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is essential for antidepressant treatment of major depressive disorder (MDD). Our repeated studies suggest that DNA methylation of a specific CpG site in the promoter region of exon IV of the BDNF gene (CpG -87) might be predictive of the efficacy of monoaminergic antidepressants such as selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and others. This trial aims to evaluate whether knowing the biomarker is non-inferior to treatment-as-usual (TAU) regarding remission rates while exhibiting significantly fewer adverse events (AE). METHODS: The BDNF trial is a prospective, randomized, rater-blinded diagnostic study conducted at five university hospitals in Germany. The study's main hypothesis is that {1} knowing the methylation status of CpG -87 is non-inferior to not knowing it with respect to the remission rate while it significantly reduces the AE rate in patients experiencing at least one AE. The baseline assessment will occur upon hospitalization and a follow-up assessment on day 49 (± 3). A telephone follow-up will be conducted on day 70 (± 3). A total of 256 patients will be recruited, and methylation will be evaluated in all participants. They will be randomly assigned to either the marker or the TAU group. In the marker group, the methylation results will be shared with both the patient and their treating physician. In the TAU group, neither the patients nor their treating physicians will receive the marker status. The primary endpoints include the rate of patients achieving remission on day 49 (± 3), defined as a score of ≤ 10 on the Hamilton Depression Rating Scale (HDRS-24), and the occurrence of AE. ETHICS AND DISSEMINATION: The trial protocol has received approval from the Institutional Review Boards at the five participating universities. This trial holds significance in generating valuable data on a predictive biomarker for antidepressant treatment in patients with MDD. The findings will be shared with study participants, disseminated through professional society meetings, and published in peer-reviewed journals. TRIAL REGISTRATION: German Clinical Trial Register DRKS00032503. Registered on 17 August 2023.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Estudos Prospectivos , Antidepressivos/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina , Metilação , Biomarcadores
10.
Sci Rep ; 14(1): 13607, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871878

RESUMO

Fair allocation of funding in multi-centre clinical studies is challenging. Models commonly used in Germany - the case fees ("fixed-rate model", FRM) and up-front staffing and consumables ("up-front allocation model", UFAM) lack transparency and fail to suitably accommodate variations in centre performance. We developed a performance-based reimbursement model (PBRM) with automated calculation of conducted activities and applied it to the cohorts of the National Pandemic Cohort Network (NAPKON) within the Network of University Medicine (NUM). The study protocol activities, which were derived from data management systems, underwent validation through standardized quality checks by multiple stakeholders. The PBRM output (first funding period) was compared among centres and cohorts, and the cost-efficiency of the models was evaluated. Cases per centre varied from one to 164. The mean case reimbursement differed among the cohorts (1173.21€ [95% CI 645.68-1700.73] to 3863.43€ [95% CI 1468.89-6257.96]) and centres and mostly fell short of the expected amount. Model comparisons revealed higher cost-efficiency of the PBRM compared to FRM and UFAM, especially for low recruitment outliers. In conclusion, we have developed a reimbursement model that is transparent, accurate, and flexible. In multi-centre collaborations where heterogeneity between centres is expected, a PBRM could be used as a model to address performance discrepancies.Trial registration: https://clinicaltrials.gov/ct2/show/NCT04768998 ; https://clinicaltrials.gov/ct2/show/NCT04747366 ; https://clinicaltrials.gov/ct2/show/NCT04679584 .


Assuntos
Análise Custo-Benefício , Humanos , Alemanha , Mecanismo de Reembolso , Estudos de Coortes , COVID-19/epidemiologia , COVID-19/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA