Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38864969

RESUMO

PURPOSE: Coronary artery bypass grafting (CABG) on cardiopulmonary bypass (CPB) is associated with myocardial ischemia-reperfusion injury (IRI), which may limit the benefit of the surgery. Both experimental and clinical studies suggest that Intralipid, a lipid emulsion commonly used for parenteral nutrition, can limit myocardial IRI. We therefore aimed to investigate whether Intralipid administered at reperfusion can reduce myocardial IRI in patients undergoing CABG on CPB. METHODS: We conducted a randomized, double-blind, pilot trial in which 29 adult patients scheduled for CABG were randomly assigned (on a 1:1 basis) to receive either 1.5 ml/kg Intralipid 20% or Ringer's Lactate 3 min before aortic cross unclamping. The primary endpoint was the 72-h area under the curve (AUC) for troponin I. RESULTS: Of the 29 patients randomized, 26 were included in the study (two withdrew consent and one was excluded before surgery). The 72-h AUC for troponin I did not significantly differ between the control and Intralipid group (546437 ± 205518 versus 487561 ± 115724 arbitrary units, respectively; P = 0.804). Other outcomes (including 72-h AUC for CK-MB, C-reactive protein, need for defibrillation, time to extubation, length of ICU and hospital stay, and serious adverse events) were similar between the two groups. CONCLUSION: In patients undergoing CABG on CPB, Intralipid did not limit myocardial IRI compared to placebo. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02807727 (registration date: 16 June 2016).

2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675065

RESUMO

Serotonin, also known as 5-hydroxytryptamine (5-HT) is a well-known neurotransmitter in the central nervous system (CNS), but also plays a significant role in peripheral tissues. There is a growing body of evidence suggesting that serotonin influences immune cell responses and contributes to the development of pathological injury in cardiovascular diseases, such as atherosclerosis, as well as other diseases which occur as a result of immune hyperactivity. In particular, high levels of serotonin are able to activate a multitude of 5-HT receptors found on the surface of immune cells, thereby influencing the process of atherosclerotic plaque formation in arteries. In this review, we will discuss the differences between serotonin production in the CNS and the periphery, and will give a brief outline of the function of serotonin in the periphery. In this context, we will particularly focus on the effects of serotonin on immune cells related to atherosclerosis and identify caveats that are important for future research.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Sistema Cardiovascular/metabolismo
3.
Cardiovasc Drugs Ther ; 36(5): 925-930, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34169381

RESUMO

PURPOSE: Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. "RIC in COVID-19" is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. METHODS: A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. CONCLUSIONS: The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. TRIAL REGISTRATION: NCT04699227, registered January 7th, 2021.


Assuntos
COVID-19 , Adulto , Cuidados Críticos , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas , Células Endoteliais , Humanos , Projetos Piloto , SARS-CoV-2 , Resultado do Tratamento
4.
Artigo em Inglês | MEDLINE | ID: mdl-36445625

RESUMO

PURPOSE: Patients hospitalized with COVID-19 may develop a hyperinflammatory, dysregulated cytokine "storm" that rapidly progresses to acute respiratory distress syndrome, multiple organ dysfunction, and even death. Remote ischaemic conditioning (RIC) has elicited anti-inflammatory and cytoprotective benefits by reducing cytokines following sepsis in animal studies. Therefore, we investigated whether RIC would mitigate the inflammatory cytokine cascade induced by COVID-19. METHODS: We conducted a prospective, multicentre, randomized, sham-controlled, single-blind trial in Brazil and South Africa. Non-critically ill adult patients with COVID-19 pneumonia were randomly allocated (1:1) to receive either RIC (intermittent ischaemia/reperfusion applied through four 5-min cycles of inflation (20 mmHg above systolic blood pressure) and deflation of an automated blood-pressure cuff) or sham for approximately 15 days. Serum was collected following RIC/sham administration and analyzed for inflammatory cytokines using flow cytometry. The endpoint was the change in serum cytokine concentrations. Participants were followed for 30 days. RESULTS: Eighty randomized participants (40 RIC and 40 sham) completed the trial. Baseline characteristics according to trial intervention were overall balanced. Despite downward trajectories of all cytokines across hospitalization, we observed no substantial changes in cytokine concentrations after successive days of RIC. Time to clinical improvement was similar in both groups (HR 1.66; 95% CI, 0.938-2.948, p 0.08). Overall RIC did not demonstrate a significant impact on the composite outcome of all-cause death or clinical deterioration (HR 1.19; 95% CI, 0.616-2.295, p = 0.61). CONCLUSION: RIC did not reduce the hypercytokinaemia induced by COVID-19 or prevent clinical deterioration to critical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04699227.

6.
Int J Cardiol Heart Vasc ; 50: 101332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38222069

RESUMO

Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent to treat solid tumours and hematologic malignancies. Although useful in the treatment of cancers, the benefit of DOX is limited due to its cardiotoxic effect that is observed in a large number of patients. In the literature, there is evidence that the presence of various factors may increase the risk of developing DOX-induced cardiotoxicity. A better understanding of the role of these different factors in DOX-induced cardiotoxicity may facilitate the choice of the therapeutic approach in cancer patients suffering from various cardiovascular risk factors. In this review, we therefore discuss the latest findings in both preclinical and clinical research suggesting a link between DOX-induced cardiotoxicity and various risk factors including sex, age, ethnicity, diabetes, dyslipidaemia, obesity, hypertension, cardiovascular disease and co-medications.

7.
Life Sci ; 196: 127-132, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373815

RESUMO

AIMS: Acute heart failure (AHF) is a burden disease, with high mortality and re-hospitalisations. Using an ex-vivo model of AHF, we have previously reported that sphingosine-1-phosphate (S1P) confers cardioprotection. However, the mechanisms remain to be elucidated. In the present study, we aimed to examine the role of the cardioprotective signal transducer and activator of transcription 3 (STAT3) in S1P mediated improved functional recovery in AHF. MATERIAL AND METHODS: Isolated hearts from male Long-Evans rats were subjected to hypotensive AHF for 35 min followed by a recovery phase of 30 min (n ≥ 4/group). S1P (10 nM) was given during either the hypotensive or the recovery phase with/without an inhibitor of STAT3, AG490. Functional parameters were recorded throughout the experiment. KEY FINDINGS: Following an AHF insult, S1P, given during the recovery phase, improved the heart rate (HR) compared to the control (175.2 ±â€¯30.7 vs. 71.6 ±â€¯27.4 beats per minute (BPM); p < 0.05), with no changes in the left ventricular developed pressure. This effect was associated with an increase in phosphorylated STAT3 levels in the nucleus. Addition of AG490 with S1P abolished the cardioprotective effect of S1P (42.3 ±â€¯17.1 vs. 148.8 ±â€¯26.4 BPM for S1P; p < 0.05). SIGNIFICANCE: Our data suggest that S1P protects in an ex-vivo rat heart model of AHF by activation of STAT3 and provide further evidence for the usage of S1P as a potential therapy in patients suffering from AHF.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Lisofosfolipídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Esfingosina/análogos & derivados , Doença Aguda , Animais , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Long-Evans , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/efeitos dos fármacos , Esfingosina/farmacologia , Tirfostinas/farmacologia , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/fisiopatologia
8.
Cardiovasc J Afr ; 25(3): 118-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000441

RESUMO

AIM: Sphingosine-1-phosphate (S1P) is a cardioprotective agent. Signal transducer and activator of transcription 3 (STAT-3) is a key mediator of many cardioprotective agents. We aimed to explore whether STAT-3 is a key mediator in S1P-induced preconditioning. METHODS: Langendorff-perfused hearts from Wistar rats and wild-type or cardiomyocyte-specific STAT-3 knockout mice were pre-treated with S1P (10 nmol/l), with or without the STAT-3 pathway inhibitor AG490, before an ischaemia-reperfusion insult. Triphenyltetrazolium chloride and Evans blue staining were used for the determination of infarct size. Western blot analysis was carried out on the S1P pre-treated hearts for detection of cytosolic, nuclear and mitochondrial phosphorylated and total STAT-3 proteins. RESULTS: Pre-treatment with S1P decreased the infarct size in isolated rat (5 ± 3% vs control 26 ± 8%, p < 0.01) and wild-type mouse hearts (13 ± 1% vs control 33 ± 3%, p < 0.05). This protective effect was abolished in the rat hearts pre-treated with AG490 (30 ± 10%, p = ns vs control) and in the hearts from STAT-3 knockout mice (35 ± 4% vs control 30 ± 3%, p = ns). Levels of phosphorylated STAT-3 were significantly increased in both the nuclear (p < 0.05 vs control) and mitochondrial (p < 0.05 vs control) fractions in the S1P pre-treated hearts, but remained unchanged in the cytosolic fraction (p = ns vs control). CONCLUSION: These novel results demonstrate that pharmacological preconditioning with S1P in the isolated heart is mediated by activation of mitochondrial and nuclear STAT-3, therefore suggesting that S1P may be a novel therapeutic target to modulate mitochondrial and nuclear function in cardiovascular disease in order to protect the heart against ischaemia-reperfusion.


Assuntos
Cardiotônicos/uso terapêutico , Lisofosfolipídeos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Tirfostinas/uso terapêutico , Animais , Modelos Animais de Doenças , Precondicionamento Isquêmico Miocárdico , Masculino , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos Wistar , Esfingosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA