Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1476-1483, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166110

RESUMO

Ion conductors comprising noncentrosymmetric frameworks have emerged as new functional materials. However, strongly correlated polarity functionality and ion transport have not been achieved. Herein, we report a ferroelectric proton conductor, K2MnN(CN)4·H2O (1·H2O), exhibiting the strong correlation between its polar skeleton and conductive ions that generate anomalous ferroelectricity via the proton-bias phenomenon. The application of an electric field of ±1 kV/cm (0.1 Hz) on 1·H2O at 298 K produced the ferroelectricity (polarization = 1.5 × 104 µC/cm2), which was enhanced by the ferroelectric-skeleton-trapped conductive protons. Furthermore, the strong polarity-proton transport coupling of 1·H2O induced a proton-rectification-like directional ion-conductive behavior that could be adjusted by the magnitude and direction of DC electric fields. Moreover, 1·H2O exhibited reversible polarity switching between the polar 1·H2O and its dehydrated form, 1, with a centrosymmetric structure comprising an order-disorder-type transition of the nitrido-bridged chains.

2.
Angew Chem Int Ed Engl ; 62(29): e202305994, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37199102

RESUMO

We show that cation ordering on A site columns, oppositely displaced via coupling to B site octahedral tilts, results in a polar phase of the columnar perovskite (NaY)MnMnTi4 O12 . This scheme is similar to hybrid improper ferroelectricity found in layered perovskites, and can be considered a realisation of hybrid improper ferroelectricity in columnar perovskites. The cation ordering is controlled by annealing temperature and when present it also polarises the local dipoles associated with pseudo-Jahn-Teller active Mn2+ ions to establish an additional ferroelectric order out of an otherwise disordered dipolar glass. Below TN ≈12 K, Mn2+ spins order, making the columnar perovskites rare systems in which ordered electric and magnetic dipoles may reside on the same transition metal sublattice.

3.
Inorg Chem ; 61(3): 1728-1734, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35019272

RESUMO

We attempted to synthesize complex metal fluorides via reaction between metal and solid-state fluorine sources and succeeded in preparing trirutile-type Li2MoF6 using LiF, the metal Mo, and CuF2. We also found a new phase of Li2MoF6 that is isostructural with trigonal Li2ZrF6 via a combination of solid-state fluorine sources and high-pressure synthesis. The reaction occurs exothermically and involves conversion and addition associated with redox reaction, and CuF2 then functions as both an oxidizing agent and fluorine source. Because the overall reaction proceeds stoichiometrically, the required amount of fluorine can be controlled by the amount of solid-state fluorine agents. The synthesis route was also applicable for the preparation of other known fluorides, Li2MF6 (M = Ti, Zr, and Nb) and ß-Li3MF6 (M = Ti and V). The synthetic route using a solid-state fluorine source is suitable for the exploration of novel inorganic complex metal fluorides.

4.
Inorg Chem ; 59(7): 4357-4365, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32186859

RESUMO

ε-Fe2O3, a metastable phase of iron oxide, is widely known as a room-temperature multiferroic material or as a superhard magnet. Element substitution into ε-Fe2O3 has been reported in the literature; however, the substituted ions have a strong site preference depending on their ionic radii and valence. In this study, in order to characterize the crystal structure and magnetic properties of ε-Fe2O3 in the Fe2+/Fe3+ coexisting states, Li+ was electrochemically inserted into ε-Fe2O3 to reduce Fe3+. The discharge and charge of Li+ into/from ε-Fe2O3 revealed that Li+ insertion was successful. X-ray magnetic circular dichroism results indicated that the reduced Fe did not exhibit site preference. Increasing the Li+ content in ε-Fe2O3 resulted in decreased saturation magnetization and irregular variation of the coercive field. We present a comprehensive discussion of how magnetic properties are modified with increasing Li+ content using transmission electron microscopy images and considering the Li+ diffusion coefficient. The results suggest that inserting Li+ into crystalline ε-Fe2O3 is a useful tool for characterizing crystal structure, lithiation limit, and magnetic properties in the coexistence of Fe2+/Fe3+.

5.
Inorg Chem ; 59(13): 9065-9076, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515189

RESUMO

The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A'A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A'[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A' site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A' and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8-13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er-Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA'3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase.

6.
J Am Chem Soc ; 140(6): 2214-2220, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29334457

RESUMO

Perovskite oxides hosting ferroelectricity are particularly important materials for modern technologies. The ferroelectric transition in the well-known oxides BaTiO3 and PbTiO3 is realized by softening of a vibration mode in the cubic perovskite structure. For most perovskite oxides, octahedral-site tilting systems are developed to accommodate the bonding mismatch due to a geometric tolerance factor t = (A-O)/[√2(B-O)] < 1. In the absence of cations having lone-pair electrons, e.g., Bi3+ and Pb2+, all simple and complex A-site and B-site ordered perovskite oxides with a t < 1 show a variety of tilting systems, and none of them become ferroelectric. The ferroelectric CaMnTi2O6 oxide is, up to now, the only one that breaks this rule. It exhibits a columnar A-site ordering with a pronounced octahedral-site tilting and yet becomes ferroelectric at Tc ≈ 650 K. Most importantly, the ferroelectricity at T < Tc is caused by an order-disorder transition instead of a displacive transition; this character may be useful to overcome the critical thickness problem experienced in all proper ferroelectrics. Application of this new ferroelectric material can greatly simplify the structure of microelectronic devices. However, CaMnTi2O6 is a high-pressure phase obtained at 7 GPa and 1200 °C, which limits its application. Here we report a new method to synthesize a gram-level sample of ferroelectric Ca2-xMnxTi2O6, having the same crystal structure as CaMnTi2O6 and a similarly high Curie temperature. The new finding paves the way for the mass production of this important ferroelectric oxide. We have used neutron powder diffraction to identify the origin of the peculiar ferroelectric transition in this double perovskite and to reveal the interplay between magnetic ordering and the ferroelectric displacement at low temperatures.

7.
Inorg Chem ; 57(24): 15462-15473, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30507117

RESUMO

A polar LiNbO3 (LN)-type oxide LiSbO3 was synthesized by a high-temperature heat treatment under a pressure of 7.7 GPa and found to exhibit ferroelectricity. The crystal structural refinement using the data of synchrotron powder X-ray diffraction and neutron diffraction and the electronic structure calculation of LN-type LiSbO3 suggest a covalent-bonding character between Sb and O. When comparing the distortion of BO6 in LN-type ABO3, the distortions of SbO6 in LiSbO3 and SnO6 in ZnSnO3, which included a B cation with a d10 electronic configuration, were smaller than those of BO6 in LN-type oxides having the second-order Jahn-Teller active B cation, e.g., LiNbO3 and ZnTiO3. The temperature dependence of the lattice parameters, second harmonic generation, dielectric permittivity, and differential scanning calorimetry made it clear that a second-order ferroelectric-paraelectric phase transition occurs at a Curie temperature of Tc = 605 ± 10 K in LN-type LiSbO3. Further, first-principles density functional theory calculation suggested that perovskite-type LiSbO3 is less stable than LN-type LiSbO3 under even high pressure, and the ambient phase of LiSbO3 directly transforms to LN-type LiSbO3 under high pressure. The phase stability of LN-type LiSbO3 and the polar and ferroelectric properties are rationalized by the covalent bonding of Sb-O and the relatively weak Coulomb repulsion between Li+ and Sb5+.

8.
Inorg Chem ; 57(11): 6648-6657, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29790349

RESUMO

We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV2O4, FeV2O4, and MnCr2O4. At 1200-1800 °C, MgV2O4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V2O3, and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV2O4 Sp transforms to CT-type FeV2O4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V2O3. MnCr2O4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV2O4 and FeV2O4 and CF-type MnCr2O4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B3+O6 octahedra (B3+ = V3+ and Cr3+) running parallel to one of orthorhombic cell axes. A relatively large A2+ cation (A2+ = Mg2+, Fe2+, and Mn2+) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A2+ cation distances of CT-type MgV2O4 and FeV2O4 and CF-type MnCr2O4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A2+ cations, respectively. A relationship between cation sizes of VIIIA2+ and VIB3+ and crystal structures (CF- and CT-types) of A2+B23+O4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A2+B23+O4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIIIA2+ and 0.55-1.1 Å for VIB3+, whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIIIA2+ and 0.6-0.65 Å for VIB3+. This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination number for A2+ cation than that of CF-type.

9.
J Am Chem Soc ; 139(12): 4574-4581, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28240901

RESUMO

Perovskite PbCoO3 synthesized at 12 GPa was found to have an unusual charge distribution of Pb2+Pb4+3Co2+2Co3+2O12 with charge orderings in both the A and B sites of perovskite ABO3. Comprehensive studies using density functional theory (DFT) calculation, electron diffraction (ED), synchrotron X-ray diffraction (SXRD), neutron powder diffraction (NPD), hard X-ray photoemission spectroscopy (HAXPES), soft X-ray absorption spectroscopy (XAS), and measurements of specific heat as well as magnetic and electrical properties provide evidence of lead ion and cobalt ion charge ordering leading to Pb2+Pb4+3Co2+2Co3+2O12 quadruple perovskite structure. It is shown that the average valence distribution of Pb3.5+Co2.5+O3 between Pb3+Cr3+O3 and Pb4+Ni2+O3 can be stabilized by tuning the energy levels of Pb 6s and transition metal 3d orbitals.

10.
J Am Chem Soc ; 137(39): 12719-28, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26374486

RESUMO

A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. We report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb(2+)(0.5)Pb(4+)(0.5)Cr(3+)O3 with Pb(2+)-Pb(4+) correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb-Cr charge transfer causes an insulator to metal transition and ∼10% volume collapse.

11.
Inorg Chem ; 54(23): 11405-10, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26575969

RESUMO

A novel LiNbO3-type (LN-type) lead zinc oxide, PbZnO3, was successfully synthesized under high pressure and temperature. Rietveld structure refinement using synchrotron powder X-ray diffraction (XRD) data demonstrated that LN-type PbZnO3 crystallized into a trigonal structure with a polar space group (R3c). The bond valence sum estimated from the interatomic distances indicated that the sample possesses a Pb(4+)Zn(2+)O3 valence state. Polarization could evolve as a result of the repulsion between constituent cations because PbZnO3 does not contain a stereochemical 6s(2) cation or a Jahn-Teller active d(0) cation. Distortion of ZnO6 octahedra resulting from cation shift is comparable with that of d(0) TiO6 in ZnTiO3 and MnTiO3 with LN-type oxides, which leads to stabilization of the polar structure. PbZnO3 exhibited metallic behavior and temperature-independent diamagnetic character. In situ XRD measurement revealed that the formation of LN-type PbZnO3 occurred directly without the formation of a perovskite phase, which is unusual among LN-type materials obtained by high-pressure synthesis.

12.
J Am Chem Soc ; 136(7): 2748-56, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24274432

RESUMO

A polar LiNbO3-type (LN-type) titanate ZnTiO3 has been successfully synthesized using ilmenite-type (IL-type) ZnTiO3 under high pressure and high temperature. The first principles calculation indicates that LN-type ZnTiO3 is a metastable phase obtained by the transformation in the decompression process from the perovskite-type phase, which is stable at high pressure and high temperature. The Rietveld structural refinement using synchrotron powder X-ray diffraction data reveals that LN-type ZnTiO3 crystallizes into a hexagonal structure with a polar space group R3c and exhibits greater intradistortion of the TiO6 octahedron in LN-type ZnTiO3 than that of the SnO6 octahedron in LN-type ZnSnO3. The estimated spontaneous polarization (75 µC/cm(2), 88 µC/cm(2)) using the nominal charge and the Born effective charge (BEC) derived from density functional perturbation theory, respectively, are greater than those of ZnSnO3 (59 µC/cm(2), 65 µC/cm(2)), which is strongly attributed to the great displacement of Ti from the centrosymmetric position along the c-axis and the fact that the BEC of Ti (+6.1) is greater than that of Sn (+4.1). Furthermore, the spontaneous polarization of LN-type ZnTiO3 is greater than that of LiNbO3 (62 µC/cm(2), 76 µC/cm(2)), indicating that LN-type ZnTiO3, like LiNbO3, is a candidate ferroelectric material with high performance. The second harmonic generation (SHG) response of LN-type ZnTiO3 is 24 times greater than that of LN-type ZnSnO3. The findings indicate that the intraoctahedral distortion, spontaneous polarization, and the accompanying SHG response are caused by the stabilization of the polar LiNbO3-type structure and reinforced by the second-order Jahn-Teller effect attributable to the orbital interaction between oxygen ions and d(0) ions such as Ti(4+).

13.
Inorg Chem ; 53(21): 11616-25, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25337807

RESUMO

The polycrystalline MO2's (HP-PdF2-type MO2, M = Rh, Os, Pt) with high-pressure PdF2 compounds were successfully synthesized under high-pressure conditions for the first time, to the best of our knowledge. The crystal structures and electromagnetic properties were studied. Previously unreported electronic properties of the polycrystalline HP-PdF2-type RuO2 and IrO2 were also studied. The refined structures clearly indicated that all compounds crystallized into the HP-PdF2-type structure, M(4+)O(2-)2, rather than the pyrite-type structure, M(n+)(O2)(n-) (n < 4). The MO2 compounds (M = Ru, Rh, Os, Ir) exhibited metallic conduction, while PtO2 was highly insulating, probably because of the fully occupied t2g band. Neither superconductivity nor a magnetic transition was detected down to a temperature of 2 K, unlike the case of 3d transition metal chalcogenide pyrites.

14.
Dalton Trans ; 53(16): 7044-7052, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563761

RESUMO

We synthesized a perovskite-type RbNbO3 at 1173 K and 4 GPa from non-perovskite RbNbO3 and investigated its crystal structure and properties towards ferroelectric material design. Single-crystal X-ray diffraction analysis revealed an orthorhombic cell in the perovskite-type structure (space group Amm2, no. 38) with a = 3.9937(2) Å, b = 5.8217(3) Å, and c = 5.8647(2) Å. This non-centrosymmetric space group is the same as the ferroelectric BaTiO3 and KNbO3 but with enhanced distortion. Structural transition from orthorhombic to two successive tetragonal phases (Tetra1 at 493 K, Tetra2 at 573 K) was observed, maintaining the perovskite framework before reverting to the triclinic ambient phase at 693 K, with no structural changes between 4 and 300 K. The first transition is similar to that of KNbO3, whereas the second to Tetra2, marked by c-axis elongation and a significant cp/ap ratio jump (from 1.07 to 1.43), is unique. This distortion suggests a transition similar to that of PbVO3, where an octahedron's oxygen separates along the c-axis, forming a pyramid. Ab initio calculations simulating negative pressure like thermal expansion predicted this phase transition (cp/ap = 1.47 at -1.2 GPa), aligning with experimental findings. Thermal analysis revealed two endothermic peaks, with the second transition entailing a greater enthalpy change and volume alteration. Strong second harmonic generation signals were observed across Ortho, Tetra1, and Tetra2 phases, similar to BaTiO3 and KNbO3. Permittivity increased during the first transition, although the second transition's effects were limited by thermal expansion-induced bulk sample collapse. Perovskite-type RbNbO3 emerges as a promising ferroelectric material.

15.
ACS Omega ; 8(31): 28778-28782, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576659

RESUMO

We have succeeded in obtaining BaSnO3 perovskite thin films with remarkable near-infrared luminescence by van der Waals growth. The films were grown on quartz glass substrates by pulsed laser deposition using hexagonal boron nitride as the seed layer, and their crystallinity was confirmed by X-ray diffraction and cross-sectional transmission electron microscopy. The near-infrared emission of the grown film exhibited a broad emission peak centered at 920 nm. The transparency of the BaSnO3 film (thickness = 1000 nm)/ hexagonal boron nitride /double-sided optically polished quartz glass substrate was approximately 90% at approximately 500 nm with or without the BaSnO3 film. Films showing remarkable near-infrared emission and high transparency obtained by van der Waals-type growth could be used in practical wavelength conversion devices that improve the efficiency of Si single-crystal solar cells. The hexagonal boron nitride seed layer supporting the van der Waals growth is an effective method for high-quality crystal growth of films. It can be used for perovskite-type oxides with many functionalities.

16.
J Am Chem Soc ; 133(42): 16920-9, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21888429

RESUMO

We synthesized two high-pressure polymorphs PbNiO(3) with different structures, a perovskite-type and a LiNbO(3)-type structure, and investigated their formation behavior, detailed structure, structural transformation, thermal stability, valence state of cations, and magnetic and electronic properties. A perovskite-type PbNiO(3) synthesized at 800 °C under a pressure of 3 GPa crystallizes as an orthorhombic GdFeO(3)-type structure with a space group Pnma. The reaction under high pressure was monitored by an in situ energy dispersive X-ray diffraction experiment, which revealed that a perovskit-type phase was formed even at 400 °C under 3 GPa. The obtained perovskite-type phase irreversibly transforms to a LiNbO(3)-type phase with an acentric space group R3c by heat treatment at ambient pressure. The Rietveld structural refinement using synchrotron X-ray diffraction data and the XPS measurement for both the perovskite- and the LiNbO(3)-type phases reveal that both phases possess the valence state of Pb(4+)Ni(2+)O(3). Perovskite-type PbNiO(3) is the first example of the Pb(4+)M(2+)O(3) series, and the first example of the perovskite containing a tetravalent A-site cation without lone pair electrons. The magnetic susceptibility measurement shows that the perovskite- and LiNbO(3)-type PbNiO(3) undergo antiferromagnetic transition at 225 and 205 K, respectively. Both the perovskite- and LiNbO(3)-type phases exhibit semiconducting behavior.

17.
Inorg Chem ; 50(12): 5389-95, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21604725

RESUMO

We synthesized polycrystalline pristine and Pr(3+)-doped perovskites La(1/3)MO(3) (M = Nb, Ta):Pr(3+) and investigated their crystal structure, optical absorption, and luminescence properties. The optical band gap of La(1/3)NbO(3) (3.2 eV) is smaller than that of La(1/3)TaO(3) (3.9 eV), which is primarily due to the difference in electronegativity between Nb and Ta. In La(1/3)NbO(3):Pr(3+), the red emission assigned to the f-f transition of Pr(3+) from the excited (1)D(2) level to the ground (3)H(4) state upon band gap photoexcitation (near-UV) was observed, whereas the f-f transition of Pr(3+) with blue-green emission from the excited (3)P(0) level to the ground (3)H(4) state was quenched. On the other hand, in La(1/3)TaO(3):Pr(3+), the blue-green emission upon band gap photoexcitation was observed. Their differences in emission behavior are attributed to the energy level of the ground and excited states of 4f(2) for Pr(3+), relative to the energy levels of the conduction and valence bands, and the trapped electron state, which mediates the relaxation of electron from the conduction band to the excited state of Pr(3+). La(1/3)NbO(3):Pr(3+) is a candidate red phosphor utilizing near-UV LED chips (e.g., λ = 375 nm) as an excitation source.

18.
Inorg Chem ; 50(13): 6392-8, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21644498

RESUMO

LiNbO(3)-type MnMO(3) (M = Ti, Sn) were synthesized under high pressure and temperature; their structures and magnetic, dielectric, and thermal properties were investigated; and their relationships were discussed. Optical second harmonic generation and synchrotron powder X-ray diffraction measurements revealed that both of the compounds possess a polar LiNbO(3)-type structure at room temperature. Weak ferromagnetism due to canted antiferromagnetic interaction was observed at 25 and 50 K for MnTiO(3) and MnSnO(3), respectively. Anomalies in the dielectric permittivity were observed at the weak ferromagnetic transition temperature for both the compounds, indicating the correlation between magnetic and dielectric properties. These results indicate that LiNbO(3)-type compounds with magnetic cations are new candidates for multiferroic materials.

19.
RSC Adv ; 11(41): 25616-25623, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478911

RESUMO

The oxyfluoride PbFeO2F was investigated as a photoanode material and as an electrocatalyst for water oxidation. PbFeO2F powder, which was synthesized by a high-pressure method and had an estimated bandgap of 2.1 eV, was deposited onto a fluorine-doped tin oxide (FTO) substrate. Mott-Schottky plot measurements for the PbFeO2F/FTO electrode showed n-type semiconductivity of PbFeO2F, with a flat-band potential of +0.53 ± 0.05 V vs. reversible hydrogen electrode (RHE). The PbFeO2F/FTO electrode, which was modified with a conductive TiO2 layer and a cobalt phosphate water-oxidation cocatalyst, showed a clear anodic photocurrent in aqueous K3PO4 solution under visible-light irradiation (λ < 600 nm). The PbFeO2F/FTO electrode without any modification functioned as a stable water-oxidation electrocatalyst to form O2 with a faradaic efficiency of close to unity. This study demonstrates that PbFeO2F is a bifunctional material, serving as a water-oxidation photoanode under a wide range of visible-light wavelengths and as an electrocatalyst that operates at a relatively low overpotential for water oxidation.

20.
Chem Commun (Camb) ; 56(65): 9276-9279, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32691796

RESUMO

The utilisation of inductive effects is emerging as a powerful tool to enhance material properties. Within the context of electrocatalysis, such effects may alter an active site's electronic structure and consequently, its catalytic activity. To this end, we introduce catalytically active cobalt species within an electron-withdrawing copper fluorophosphate host via a mechanochemical synthetic method. The resulting mixed-metal material features exceptional performance towards electrochemical water oxidation (η of ∼300 mV for 100 mA cm-2) and biomass valorisation (95% selectivity for 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid conversion), thus opening avenues for the rational design of heterogeneous catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA