Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Magn Reson Med ; 77(5): 1874-1883, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27174590

RESUMO

PURPOSE: To develop a method for acquiring whole-heart 3D image-based navigators (iNAVs) with isotropic resolution for tracking and correction of localized motion in coronary magnetic resonance angiography (CMRA). METHODS: To monitor motion in all regions of the heart during a free-breathing scan, a variable-density cones trajectory was designed to collect a 3D iNAV every heartbeat in 176 ms with 4.4 mm isotropic spatial resolution. The undersampled 3D iNAV data were reconstructed with efficient self-consistent parallel imaging reconstruction (ESPIRiT). 3D translational and nonrigid motion-correction methods using 3D iNAVs were compared to previous translational and nonrigid methods using 2D iNAVs. RESULTS: Five subjects were scanned with a 3D cones CMRA sequence, accompanied by both 2D and 3D iNAVs. The quality of the right and left anterior descending coronary arteries was assessed on 2D and 3D iNAV-based motion-corrected images using a vessel sharpness metric and qualitative reader scoring. This assessment showed that nonrigid motion correction based on 3D iNAVs produced results that were noninferior to correction based on 2D iNAVs. CONCLUSION: The ability to acquire isotropic-resolution 3D iNAVs every heartbeat during a CMRA scan was demonstrated. Such iNAVs enabled direct measurement of localized motion for nonrigid motion correction in free-breathing whole-heart CMRA. Magn Reson Med 77:1874-1883, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Adulto , Algoritmos , Artefatos , Angiografia Coronária/métodos , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Miocárdio/patologia , Imagens de Fantasmas , Reprodutibilidade dos Testes
2.
Magn Reson Med ; 77(5): 1884-1893, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27174673

RESUMO

PURPOSE: To develop a retrospective nonrigid motion-correction method based on 3D image-based navigators (iNAVs) for free-breathing whole-heart coronary magnetic resonance angiography (MRA). METHODS: The proposed method detects global rigid-body motion and localized nonrigid motion from 3D iNAVs and compensates them with an autofocusing algorithm. To model the global motion, 3D rotation and translation are estimated from the 3D iNAVs. Two sets of localized nonrigid motions are obtained from deformation fields between 3D iNAVs and reconstructed binned images, respectively. A bank of motion-corrected images is generated and the final image is assembled pixel-by-pixel by selecting the best focused pixel from this bank. In vivo studies with six healthy volunteers were conducted to compare the performance of the proposed method with 3D translational motion correction and no correction. RESULTS: In vivo studies showed that compared to no correction, 3D translational motion correction and the proposed method increased the vessel sharpness by 13% ± 13% and 19% ± 16%, respectively. Out of 90 vessel segments, 75 segments showed improvement with the proposed method compared to 3D translational correction. CONCLUSION: We have developed a nonrigid motion-correction method based on 3D iNAVs and an autofocusing algorithm that improves the vessel sharpness of free-breathing whole-heart coronary MRA. Magn Reson Med 77:1884-1893, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Angiografia Coronária/métodos , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Adulto , Algoritmos , Artefatos , Análise por Conglomerados , Feminino , Voluntários Saudáveis , Coração/fisiologia , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
3.
Magn Reson Med ; 74(3): 614-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26172829

RESUMO

PURPOSE: To improve the spatial/temporal resolution of whole-heart coronary MR angiography by developing a variable-density (VD) 3D cones acquisition suitable for image reconstruction with parallel imaging and compressed sensing techniques. METHODS: A VD 3D cones trajectory design incorporates both radial and spiral trajectory undersampling techniques to achieve higher resolution. This design is used to generate a VD 3D cones trajectory with 0.8 mm/66 ms isotropic spatial/temporal resolution, using a similar number of readouts as our previous fully sampled cones trajectory (1.2 mm/100 ms). Scans of volunteers and patients are performed to evaluate the performance of the VD trajectory, using non-Cartesian L1 -ESPIRiT for high-resolution image reconstruction. RESULTS: With gridding reconstruction, the high-resolution scans experience an expected drop in signal-to-noise and contrast-to-noise ratios, but with L1 -ESPIRiT, the apparent noise is substantially reduced. Compared with 1.2 mm images, in each volunteer, the L1 -ESPIRiT 0.8 mm images exhibit higher vessel sharpness values in the right and left anterior descending arteries. CONCLUSION: Coronary MR angiography with isotropic submillimeter spatial resolution and high temporal resolution can be performed with VD 3D cones to improve the depiction of coronary arteries.


Assuntos
Angiografia Coronária/métodos , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído
4.
Magn Reson Med ; 73(5): 1764-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24806049

RESUMO

PURPOSE: To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. METHODS: Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. RESULTS: The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). CONCLUSION: The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Algoritmos , Feminino , Humanos , Masculino , Meglumina/análogos & derivados , Contração Miocárdica/fisiologia , Compostos Organometálicos , Valores de Referência , Sensibilidade e Especificidade
5.
Magn Reson Med ; 74(6): 1632-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521477

RESUMO

PURPOSE: To develop a magnetization preparation sequence for simultaneous outer volume suppression (OVS) and T2 weighting in whole-heart coronary magnetic resonance angiography. METHODS: A combined OVS and T2 preparation sequence (OVS-T2 Prep) was designed with a nonselective adiabatic 90° tipdown pulse, two adiabatic 180° refocusing pulses, and a 2D spiral -90° tipup pulse. The OVS-T2 Prep preserves the magnetization inside an elliptic cylinder with T2 weighting, while saturating the magnetization outside the cylinder. Its performance was tested on phantoms and on 13 normal subjects with coronary magnetic resonance angiography using 3D cones trajectories. RESULTS: Phantom studies showed expected T2 -dependent signal amplitude in the spatial passband and suppressed signal in the spatial stopband. In vivo studies with full-field-of-view cones yielded a passband-to-stopband signal ratio of 3.18 ± 0.77 and blood-myocardium contrast-to-noise ratio enhancement by a factor of 1.43 ± 0.20 (P < 0.001). In vivo studies with reduced-field-of-view cones showed that OVS-T2 Prep well suppressed the aliasing artifacts, as supported by significantly reduced signal in the regions with no tissues compared to the images acquired without preparation (P < 0.0001). CONCLUSION: OVS-T2 Prep is a compact sequence that can accelerate coronary magnetic resonance angiography by suppressing signals from tissues surrounding the heart while simultaneously enhancing the blood-myocardium contrast.


Assuntos
Artefatos , Angiografia Coronária/métodos , Vasos Coronários/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
6.
Magn Reson Med ; 72(3): 880-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24166591

RESUMO

PURPOSE: The balanced steady-state free precession (bSSFP) pulse sequence has shown to be of great interest due to its high signal-to-noise ratio efficiency. However, bSSFP images often suffer from banding artifacts due to off-resonance effects, which we aim to minimize in this article. METHODS: We present a general and fast two-step algorithm for 1) estimating the unknowns in the bSSFP signal model from multiple phase-cycled acquisitions, and 2) reconstructing band-free images. The first step, linearization for off-resonance estimation (LORE), solves the nonlinear problem approximately by a robust linear approach. The second step applies a Gauss-Newton algorithm, initialized by LORE, to minimize the nonlinear least squares criterion. We name the full algorithm LORE-GN. RESULTS: We derive the Cramér-Rao bound, a theoretical lower bound of the variance for any unbiased estimator, and show that LORE-GN is statistically efficient. Furthermore, we show that simultaneous estimation of T1 and T2 from phase-cycled bSSFP is difficult, since the Cramér-Rao bound is high at common signal-to-noise ratio. Using simulated, phantom, and in vivo data, we illustrate the band-reduction capabilities of LORE-GN compared to other techniques, such as sum-of-squares. CONCLUSION: Using LORE-GN we can successfully minimize banding artifacts in bSSFP.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas
7.
Magn Reson Med ; 72(2): 347-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24006292

RESUMO

PURPOSE: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography acquisitions using an image-navigated 3D cones sequence. METHODS: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing coronary magnetic resonance angiography scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. RESULTS: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. CONCLUSION: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction.


Assuntos
Artefatos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
8.
Magn Reson Med ; 70(2): 527-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23172805

RESUMO

Noncontrast-enhanced renal angiography techniques based on balanced steady-state free precession avoid external contrast agents, take advantage of high inherent blood signal from the T 2 / T 1 contrast mechanism, and have short steady-state free precession acquisition times. However, background suppression is limited; inflow times are inflexible; labeling region is difficult to define when tagging arterial flow; and scan times are long. To overcome these limitations, we propose the use of multiple inversion recovery preparatory pulses combined with alternating pulse repetition time balanced steady-state free precession to produce renal angiograms. Multiple inversion recovery uses selective spatial saturation followed by four nonselective inversion recovery pulses to concurrently null a wide range of background T 1 species while allowing for adjustable inflow times; alternating pulse repetition time steady-state free precession maintains vessel contrast and provides added fat suppression. The high level of suppression enables imaging in three-dimensional as well as projective two-dimensional formats, the latter of which has a scan time as short as one heartbeat. In vivo studies at 1.5 T demonstrate the superior vessel contrast of this technique.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Artéria Renal/anatomia & histologia , Artéria Renal/fisiologia , Circulação Renal/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Meios de Contraste , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
9.
Magn Reson Med ; 67(6): 1673-83, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22025426

RESUMO

Small perturbations of steady-state sequence parameters can induce very large spectral profile deviations that are localized to specific off-resonant frequencies, denoted critical frequencies. Although, a small number of studies have previously considered the use of these highly specific modulations for MR angiography and elastography, many potential applications still remain to be explored. An analysis of this phenomenon using a linear systems technique and a geometric magnetization trajectory technique shows that the critical frequencies correspond to singularities in the steady-state signal equation. An interleaved acquisition combined with a complex difference technique yields a spectral profile containing sharp peaks interleaved with wide stopbands, while a complex sum technique yields a spectral profile similar to that of balanced steady-state free precession. Simulations and phantom experiments are used to demonstrate a novel application of this technique for positive-contrast imaging of superparamagnetic iron-oxide nanoparticles. The technique is shown to yield images with high levels of positive contrast and good water and fat background suppression. The technique can also simultaneously yield images with contrast similar to balanced steady-state free precession.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA